Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This paper presents \textit{OFHE}, an electro-optical accelerator designed to process Discretized TFHE (DTFHE) operations, which encrypt multi-bit messages and support homomorphic multiplications, lookup table operations and full-domain functional bootstrappings. While DTFHE is more efficient and versatile than other fully homomorphic encryption schemes, it requires 32-, 64-, and 128-bit polynomial multiplications, which can be time-consuming. Existing TFHE accelerators are not easily upgradable to support DTFHE operations due to limited datapaths, a lack of datapath bit-width reconfigurability, and power inefficiencies when processing FFT and inverse FFT (IFFT) kernels. Compared to prior TFHE accelerators, OFHE addresses these challenges by improving the DTFHE operation latency by 8.7\%, the DTFHE operation throughput by $57\%$, and the DTFHE operation throughput per Watt by $94\%$.more » « lessFree, publicly-accessible full text available May 1, 2025
-
The widespread use of machine learning is changing our daily lives. Unfortunately, clients are often concerned about the privacy of their data when using machine learning-based applications. To address these concerns, the development of privacy-preserving machine learning (PPML) is essential. One promising approach is the use of fully homomorphic encryption (FHE) based PPML, which enables services to be performed on encrypted data without decryption. Although the speed of computationally expensive FHE operations can be significantly boosted by prior ASIC-based FHE accelerators, the performance of key-switching, the dominate primitive in various FHE operations, is seriously limited by their small bit-width datapaths and frequent matrix transpositions. In this paper, we present an electro-optical (EO) PPML accelerator, PriML, to accelerate FHE operations. Its 512-bit datapath supporting 510-bit residues greatly reduces the key-switching cost. We also create an in-scratchpad-memory transpose unit to fast transpose matrices. Compared to prior PPML accelerators, on average, PriML reduces the latency of various machine learning applications by > 94.4% and the energy consumption by > 95%.more » « less
-
Fully Homomorphic Encryption over the Torus (TFHE) allows arbitrary computations to happen directly on ciphertexts using homomorphic logic gates. However, each TFHE gate on state-of-the-art hardware platforms such as GPUs and FPGAs is extremely slow (> 0.2ms). Moreover, even the latest FPGA-based TFHE accelerator cannot achieve high energy efficiency, since it frequently invokes expensive double-precision floating point FFT and IFFT kernels. In this paper, we propose a fast and energy-efficient accelerator, MATCHA, to process TFHE gates. MATCHA supports aggressive bootstrapping key unrolling to accelerate TFHE gates without decryption errors by approximate multiplication-less integer FFTs and IFFTs, and a pipelined datapath. Compared to prior accelerators, MATCHA improves the TFHE gate processing throughput by 2.3x, and the throughput per Watt by 6.3x.more » « less
-
Homomorphic encryption (HE) and garbled circuit (GC) provide the protection for users’ privacy. However, simply mixing the HE and GC in RNN models suffer from long inference latency due to slow activation functions. In this paper, we present a novel hybrid structure of HE and GC gated recurrent unit (GRU) network, , for low-latency secure inferences. replaces computationally expensive GC-based tanh with fast GC-based ReLU, and then quantizes sigmoid and ReLU to smaller bit-length to accelerate activations in a GRU. We evaluate with multiple GRU models trained on 4 public datasets. Experimental results show achieves top-notch accuracy and improves the secure inference latency by up to 138× over one of the state-of-the-art secure networks on the Penn Treebank dataset.more » « less
-
null (Ed.)Nanopore genome sequencing is the key to enabling personalized medicine, global food security, and virus surveillance. The state-of-the-art base-callers adopt deep neural networks (DNNs) to translate electrical signals generated by nanopore sequencers to digital DNA symbols. A DNN-based base-caller consumes 44.5% of total execution time of a nanopore sequencing pipeline. However, it is difficult to quantize a base-caller and build a power-efficient processing-in-memory (PIM) to run the quantized base-caller. Although conventional network quantization techniques reduce the computing overhead of a base-caller by replacing floating-point multiply-accumulations by cheaper fixed-point operations, it significantly increases the number of systematic errors that cannot be corrected by read votes. The power density of prior nonvolatile memory (NVM)-based PIMs has already exceeded memory thermal tolerance even with active heat sinks, because their power efficiency is severely limited by analog-to-digital converters (ADC). Finally, Connectionist Temporal Classification (CTC) decoding and read voting cost 53.7% of total execution time in a quantized base-caller, and thus became its new bottleneck. In this paper, we propose a novel algorithm/architecture co-designed PIM, Helix, to power-efficiently and accurately accelerate nanopore base-calling. From algorithm perspective, we present systematic error aware training to minimize the number of systematic errors in a quantized base-caller. From architecture perspective, we propose a low-power SOT-MRAM-based ADC array to process analog-to-digital conversion operations and improve power efficiency of prior DNN PIMs. Moreover, we revised a traditional NVM-based dot-product engine to accelerate CTC decoding operations, and create a SOT-MRAM binary comparator array to process read voting. Compared to state-of-the-art PIMs, Helix improves base-calling throughput by 6x, throughput per Watt by 11.9x and per mm2 by 7.5x without degrading base-calling accuracy.more » « less
-
H. Larochelle ; M. Ranzato ; R. Hadsell ; M.F. Balcan ; H. Lin (Ed.)
-
Although Convolutional Neural Networks (CNNs) have demonstrated the state-of-the-art inference accuracy in various intelligent applications, each CNN inference involves millions of expensive floating point multiply-accumulate (MAC) operations. To energy-efficiently process CNN inferences, prior work proposes an electro-optical accelerator to process power-of-2 quantized CNNs by electro-optical ripple-carry adders and optical binary shifters. The electro-optical accelerator also uses SRAM registers to store intermediate data. However, electro-optical ripple-carry adders and SRAMs seriously limit the operating frequency and inference throughput of the electro-optical accelerator, due to the long critical path of the adder and the long access latency of SRAMs. In this paper, we propose a photonic nonvolatile memory (NVM)-based accelerator, Light-Bulb, to process binarized CNNs by high frequency photonic XNOR gates and popcount units. LightBulb also adopts photonic racetrack memory to serve as input/output registers to achieve high operating frequency. Compared to prior electro-optical accelerators, on average, LightBulb improves the CNN inference throughput by 17× ~ 173× and the inference throughput per Watt by 17.5 × ~ 660×.more » « less
-
A scalp-recording electroencephalography (EEG)-based brain-computer interface (BCI) system can greatly improve the quality of life for people who suffer from motor disabilities. Deep neural networks consisting of multiple convolutional, LSTM and fully-connected layers are created to decode EEG signals to maximize the human intention recognition accuracy. However, prior FPGA, ASIC, ReRAM and photonic accelerators cannot maintain sufficient battery lifetime when processing realtime intention recognition. In this paper, we propose an ultra-low-power photonic accelerator, MindReading, for human intention recognition by only low bit-width addition and shift operations. Compared to prior neural network accelerators, to maintain the real-time processing throughput, MindReading reduces the power consumption by 62.7% and improves the throughput per Watt by 168%.more » « less
-
Network quantization is one of the most hardware friendly techniques to enable the deployment of convolutional neural networks (CNNs) on low-power mobile devices. Recent network quantization techniques quantize each weight kernel in a convolutional layer independently for higher inference accuracy, since the weight kernels in a layer exhibit different variances and hence have different amounts of redundancy. The quantization bitwidth or bit number (QBN) directly decides the inference accuracy, latency, energy and hardware overhead. To effectively reduce the redundancy and accelerate CNN inferences, various weight kernels should be quantized with different QBNs. However, prior works use only one QBN to quantize each convolutional layer or the entire CNN, because the design space of searching a QBN for each weight kernel is too large. The hand-crafted heuristic of the kernel-wise QBN search is so sophisticated that domain experts can obtain only sub-optimal results. It is difficult for even deep reinforcement learning (DRL) DDPG-based agents to find a kernel-wise QBN configuration that can achieve reasonable inference accuracy. In this paper, we propose a hierarchical-DRL-based kernel-wise network quantization technique, AutoQ, to automatically search a QBN for each weight kernel, and choose another QBN for each activation layer. Compared to the models quantized by the state-of-the-art DRL-based schemes, on average, the same models quantized by AutoQ reduce the inference latency by 54.06%, and decrease the inference energy consumption by 50.69%, while achieving the same inference accuracy.more » « less
-
Homomorphic Encryption (HE) is one of the most promising security solutions to emerging Machine Learning as a Service (MLaaS). Several Leveled-HE (LHE)-enabled Convolutional Neural Networks (LHECNNs) are proposed to implement MLaaS to avoid the large bootstrapping overhead. However, prior LHECNNs have to pay significant computational overhead but achieve only low inference accuracy, due to their polynomial approximation activations and poolings. Stacking many polynomial approximation activation layers in a network greatly reduces the inference accuracy, since the polynomial approximation activation errors lead to a low distortion of the output distribution of the next batch normalization layer. So the polynomial approximation activations and poolings have become the obstacle to a fast and accurate LHECNN model. In this paper, we propose a Shift-accumulation-based LHE-enabled deep neural network (SHE) for fast and accurate inferences on encrypted data. We use the binary-operation-friendly leveled-TFHE (LTFHE) encryption scheme to implement ReLU activations and max poolings. We also adopt the logarithmic quantization to accelerate inferences by replacing expensive LTFHE multiplications with cheap LTFHE shifts. We propose a mixed bitwidth accumulator to expedite accumulations. Since the LTFHE ReLU activations, max poolings, shifts and accumulations have small multiplicative depth, SHE can implement much deeper network architectures with more convolutional and activation layers. Our experimental results show SHE achieves the state-of-the-art inference accuracy and reduces the inference latency by 76.21% ~ 94.23% over prior LHECNNs on MNIST and CIFAR-10.more » « less