skip to main content

Search for: All records

Creators/Authors contains: "Lu, H"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available November 1, 2023
  2. We see the external world as consisting not only of objects and their parts, but also of relations that hold between them. Visual analogy, which depends on similarities between relations, provides a clear example of how perception supports reasoning. Here we report an experiment in which we quantitatively measured the human ability to find analogical mappings between parts of different objects, where the objects to be compared were drawn either from the same category (e.g., images of two mammals, such as a dog and a horse), or from two dissimilar categories (e.g., a chair image mapped to a cat image). Humans showed systematic mapping patterns, but with greater variability in mapping responses when objects were drawn from dissimilar categories. We simulated the human response of analogical mapping using a computational model of mapping between 3D objects, visiPAM (visual Probabilistic Analogical Mapping). VisiPAM takes point-cloud representations of two 3D objects as inputs, and outputs the mapping between analogous parts of the two objects. VisiPAM consists of a visual module that constructs structural representations of individual objects, and a reasoning module that identifies a probabilistic mapping between parts of the two 3D objects. Model simulations not only capture the qualitative pattern ofmore »human mapping performance cross conditions, but also approach human-level reliability in solving visual analogy problems.« less
    Free, publicly-accessible full text available January 1, 2023
  3. Human reasoning goes beyond knowledge about individual entities, extending to inferences based on relations between entities. Here we focus on the use of relations in verbal analogical mapping, sketching a general approach based on assessing similarity between patterns of semantic relations between words. This approach combines research in artificial intelligence with work in psychology and cognitive science, with the aim of minimizing hand coding of text inputs for reasoning tasks. The computational framework takes as inputs vector representations of individual word meanings, coupled with semantic representations of the relations between words, and uses these inputs to form semantic-relation networks for individual analogues. Analogical mapping is operationalized as graph matching under cognitive and computational constraints. The approach highlights the central role of semantics in analogical mapping.
    Free, publicly-accessible full text available January 1, 2023
  4. Abstract We examine the impact of writing-to-learn (WTL) on promoting conceptual understanding of introductory materials science and engineering, including crystal structures, stress–strain behavior, phase diagrams, and corrosion. We use an analysis of writing products in comparison with pre/post concept-inventory-style assessments. For all topics, statistically significant improvements between draft and revision scores are apparent. For the stress–strain and phase diagram WTL assignments that require synthesis of qualitative data into quantitative formats, while emphasizing microstructure-properties correlations, the highest WTL effect sizes and medium-to-high gains on corresponding assessments are observed. We present these findings and suggest strategies for future WTL design and implementation. Graphic abstract
    Free, publicly-accessible full text available February 1, 2023
  5. Analogy problems involving multiple ordered relations of the same type create mapping ambiguity, requiring some mechanism for relational integration to achieve mapping accuracy. We address the question of whether the integration of ordered relations depends on their logical form alone, or on semantic representations that differ across relation types. We developed a triplet mapping task that provides a basic paradigm to investigate analogical reasoning with simple relational structures. Experimental results showed that mapping performance differed across orderings based on category, linear order, and causal relations, providing evidence that each transitive relation has its own semantic representation. Hence, human analogical mapping of ordered relations does not depend solely on their formal property of transitivity. Instead, human ability to solve mapping problems by integrating relations relies on the semantics of relation representations. We also compared human performance to the performance of several vector-based computational models of analogy. These models performed above chance but fell short of human performance for some relations, highlighting the need for further model development.
    Free, publicly-accessible full text available January 1, 2023
  6. Computational models of verbal analogy and relational similarity judgments can employ different types of vector representations of word meanings (embeddings) generated by machine-learning algorithms. An important question is whether human-like relational processing depends on explicit representations of relations (i.e., representations separable from those of the concepts being related), or whether implicit relation representations suffice. Earlier machine-learning models produced static embeddings for individual words, identical across all contexts. However, more recent Large Language Models (LLMs), which use transformer architectures applied to much larger training corpora, are able to produce contextualized embeddings that have the potential to capture implicit knowledge of semantic relations. Here we compare multiple models based on different types of embeddings to human data concerning judgments of relational similarity and solutions of verbal analogy problems. For two datasets, a model that learns explicit representations of relations, Bayesian Analogy with Relational Transformations (BART), captured human performance more successfully than either a model using static embeddings (Word2vec) or models using contextualized embeddings created by LLMs (BERT, RoBERTa, and GPT-2). These findings support the proposal that human thinking depends on representations that separate relations from the concepts they relate.
    Free, publicly-accessible full text available January 1, 2023
  7. A key property of human cognition is its ability to generate novel predictions about unfamiliar situations by completing a partially-specified relation or an analogy. Here, we present a computational model capable of producing generative inferences from relations and analogs. This model, BART-Gen, operates on explicit representations of relations learned by BART (Bayesian Analogy with Relational Transformations), to achieve two related forms of generative inference: reasoning from a single relation, and reasoning from an analog. In the first form, a reasoner completes a partially-specified instance of a stated relation (e.g., robin is a type of ____). In the second, a reasoner completes a target analog based on a stated source analog (e.g., sedan:car :: robin:____). We compare the performance of BART-Gen with that of BERT, a popular model for Natural Language Processing (NLP) that is trained on sentence completion tasks and that does not rely on explicit representations of relations. Across simulations and human experiments, we show that BART-Gen produces more human-like responses for generative inferences from relations and analogs than does the NLP model. These results demonstrate the essential role of explicit relation representations in human generative reasoning.
    Free, publicly-accessible full text available January 1, 2023
  8. Free, publicly-accessible full text available January 1, 2023
  9. Free, publicly-accessible full text available January 1, 2023
  10. Free, publicly-accessible full text available January 1, 2023