Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available February 1, 2025
-
Abstract Gyrochronology, the field of age dating stars using mainly their rotation periods and masses, is ideal for inferring the ages of individual main-sequence stars. However, due to the lack of physical understanding of the complex magnetic fields in stars, gyrochronology relies heavily on empirical calibrations that require consistent and reliable stellar age measurements across a wide range of periods and masses. In this paper, we obtain a sample of consistent ages using the gyro-kinematic age-dating method, a technique to calculate the kinematics ages of stars. Using a Gaussian process model conditioned on ages from this sample (∼1–14 Gyr) and known clusters (0.67–3.8 Gyr), we calibrate the first empirical gyrochronology relation that is capable of inferring ages for single, main-sequence stars between 0.67 and 14 Gyr. Cross-validating and testing results suggest our model can infer cluster and asteroseismic ages with an average uncertainty of just over 1 Gyr, and the inferred ages for wide binaries agree within 0.83 Gyr. With this model, we obtain gyrochronology ages for ∼100,000 stars within 1.5 kpc of the Sun with period measurements from Kepler and Zwicky Transient Facility and 384 unique planet host stars. A simple code is provided to infer gyrochronology ages of stars with temperature and period measurements.
-
Abstract The intermediate period gap, discovered by Kepler, is an observed dearth of stellar rotation periods in the temperature–period diagram at ∼20 days for G dwarfs and up to ∼30 days for early-M dwarfs. However, because Kepler mainly targeted solar-like stars, there is a lack of measured periods for M dwarfs, especially those at the fully convective limit. Therefore it is unclear if the intermediate period gap exists for mid- to late-M dwarfs. Here, we present a period catalog containing 40,553 rotation periods (9535 periods >10 days), measured using the Zwicky Transient Facility (ZTF). To measure these periods, we developed a simple pipeline that improves directly on the ZTF archival light curves and reduces the photometric scatter by 26%, on average. This new catalog spans a range of stellar temperatures that connect samples from Kepler with MEarth, a ground-based time-domain survey of bright M dwarfs, and reveals that the intermediate period gap closes at the theoretically predicted location of the fully convective boundary ( G BP − G RP ∼ 2.45 mag). This result supports the hypothesis that the gap is caused by core–envelope interactions. Using gyro-kinematic ages, we also find a potential rapid spin-down of stars across this period gap.more » « less
-
Abstract Stellar variability is driven by a multitude of internal physical processes that depend on fundamental stellar properties. These properties are our bridge to reconciling stellar observations with stellar physics and to understand the distribution of stellar populations within the context of galaxy formation. Numerous ongoing and upcoming missions are charting brightness fluctuations of stars over time, which encode information about physical processes such as the rotation period, evolutionary state (such as effective temperature and surface gravity), and mass (via asteroseismic parameters). Here, we explore how well we can predict these stellar properties, across different evolutionary states, using only photometric time-series data. To do this, we implement a convolutional neural network, and with data-driven modeling we predict stellar properties from light curves of various baselines and cadences. Based on a single quarter of Kepler data, we recover the stellar properties, including the surface gravity for red giant stars (with an uncertainty of ≲0.06 dex) and rotation period for main-sequence stars (with an uncertainty of ≲5.2 days, and unbiased from ≈5 to 40 days). Shortening the Kepler data to a 27 days Transiting Exoplanet Survey Satellite–like baseline, we recover the stellar properties with a small decrease in precision, ∼0.07 for log
g and ∼5.5 days forP rot, unbiased from ≈5 to 35 days. Our flexible data-driven approach leverages the full information content of the data, requires minimal or no feature engineering, and can be generalized to other surveys and data sets. This has the potential to provide stellar property estimates for many millions of stars in current and future surveys. -
Precise Gaia measurements of positions, parallaxes, and proper motions provide an opportunity to calculate 3D positions and 2D velocities (i.e., 5D phase-space) of Milky Way stars. Where available, spectroscopic radial velocity (RV) measurements provide full 6D phase-space information, however there are now and will remain many stars without RV measurements. Without an RV it is not possible to directly calculate 3D stellar velocities; however, one can infer 3D stellar velocities by marginalizing over the missing RV dimension. In this paper, we infer the 3D velocities of stars in the Kepler field in Cartesian Galactocentric coordinates (vx, vy, vz). We directly calculate velocities for around a quarter of all Kepler targets, using RV measurements available from the Gaia, LAMOST, and APOGEE spectroscopic surveys. Using the velocity distributions of these stars as our prior, we infer velocities for the remaining three quarters of the sample by marginalizing over the RV dimension. The median uncertainties on our inferred vx, vy, and vz velocities are around 4, 18, and 4 km/s, respectively. We provide 3D velocities for a total of 148,590 stars in the Kepler field. These 3D velocities could enable kinematic age-dating, Milky Way stellar population studies, and other scientific studies using the benchmark sample of well-studied Kepler stars. Although the methodology used here is broadly applicable to targets across the sky, our prior is specifically constructed from and for the Kepler field. Care should be taken to use a suitable prior when extending this method to other parts of the Galaxy.more » « less
-
Similarities behind the high- and low- α disc: small intrinsic abundance scatter and migrating stars
ABSTRACT The detailed age-chemical abundance relations of stars measure time-dependent chemical evolution. These trends offer strong empirical constraints on nucleosynthetic processes, as well as the homogeneity of star-forming gas. Characterizing chemical abundances of stars across the Milky Way over time has been made possible very recently, thanks to surveys like Gaia, APOGEE, and Kepler. Studies of the low-α disc have shown that individual elements have unique age–abundance trends and the intrinsic dispersion around these relations is small. In this study, we examine and compare the age distribution of stars across both the high and low-α disc and quantify the intrinsic dispersion of 16 elements around their age–abundance relations at [Fe/H] = 0 using APOGEE DR16. We examine the age–metallicity relation and visualize the temporal and spatial distribution of disc stars in small chemical cells. We find: (1) the high-α disc has shallower age–abundance relations compared to the low-α disc, but similar median intrinsic dispersions of ∼0.03 dex; (2) turnover points in the age-[Fe/H] relations across radius for both the high- and low-α disc. The former constrains the mechanisms that set similar intrinsic dispersions, regardless of differences in the enrichment history, for stars in both disc, and the latter indicates the presence of radial migration in both disc. Our study is accompanied by an age catalogue for 64 317 stars in APOGEE derived using the cannon with a median uncertainty of 1.5 Gyr (26 per cent; APO-CAN stars), and a red clump catalogue of 22 031 stars with a contamination rate of 2.7 per cent.