Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract While it has been known for some time that reducing fluids have bleached red beds adjacent to fault zones and regionally across the Colorado Plateau, the volumes of fluids expelled along faults have never been quantified. We have developed and applied a suite of one-dimensional hydrologic models to test the hypothesis that internally generated, reducing fluids migrated up sub-basin bounding faults across the Paradox Basin and bleached overlying red beds. The internal fluid driving mechanisms included are mechanical compaction, petroleum and natural gas generation, aquathermal expansion of water, and clay dewatering. The model was calibrated using pressure, temperature, porosity, permeability, and vitrinite reflectance data. Model results indicate that sediment compaction was the most important pressure generation mechanism, producing the majority of internal fluids sourced during basin evolution. Peak fluid migration occurred during the Pennsylvanian–Permian (325–300 Ma) and Cretaceous (95–65 Ma) periods, the latter being concurrent with simulated peak oil/gas generation (87–74 Ma), which likely played a role in the bleaching of red beds. Batch geochemical advection models and mass balance calculations were utilized to estimate the volume of bleaching in an idealized reservoir having a thickness (~100 m) and porosity (0.2) corresponding to bleached reservoirs observed in the Paradox Basin. Bleaching volume calculations show that internal fluid driving mechanisms were likely responsible for fault-related alteration observed within the Wingate, Morrison, and Navajo Formations in four localities across the Paradox Basin in the Colorado Plateau, Utah and Colorado, USA. The volume calculation required that 33%–55% of the total basinal fluids, composed of hydrogen-sulfide and paleo-seawater, migrated into an overlying red bed reservoir (0.5 wt% Fe2O3).more » « lessFree, publicly-accessible full text available January 30, 2026
-
null (Ed.)Abstract. Ice-nucleating particles (INPs) are efficiently removed fromclouds through precipitation, a convenience of nature for the study of thesevery rare particles that influence multiple climate-relevant cloudproperties including ice crystal concentrations, size distributions andphase-partitioning processes. INPs suspended in precipitation can be used toestimate in-cloud INP concentrations and to infer their originalcomposition. Offline droplet assays are commonly used to measure INPconcentrations in precipitation samples. Heat and filtration treatmentsare also used to probe INP composition and size ranges. Many previousstudies report storing samples prior to INP analyses, but little is knownabout the effects of storage on INP concentration or their sensitivity totreatments. Here, through a study of 15 precipitation samples collected at acoastal location in La Jolla, CA, USA, we found INP concentration changes upto > 1 order of magnitude caused by storage to concentrations ofINPs with warm to moderate freezing temperatures (−7 to−19 ∘C). We compared four conditions: (1) storage at roomtemperature (+21–23 ∘C), (2) storage at +4 ∘C, (3) storage at −20 ∘C and (4) flash-freezing samples with liquid nitrogen prior to storage at −20 ∘C. Results demonstrate that storage can lead to bothenhancements and losses of greater than 1 order of magnitude, withnon-heat-labile INPs being generally less sensitive to storage regime, butsignificant losses of INPs smaller than 0.45 µm in all tested storageprotocols. Correlations between total storage time (1–166 d) and changesin INP concentrations were weak across sampling protocols, with theexception of INPs with freezing temperatures ≥ −9 ∘C in samples stored at room temperature. We provide thefollowing recommendations for preservation of precipitation samples fromcoastal or marine environments intended for INP analysis: that samples bestored at −20 ∘C to minimize storage artifacts, thatchanges due to storage are likely an additional uncertainty in INPconcentrations, and that filtration treatments be applied only to freshsamples. At the freezing temperature −11 ∘C, average INPconcentration losses of 51 %, 74 %, 16 % and 41 % were observed foruntreated samples stored using the room temperature, +4, −20 ∘C, and flash-frozen protocols, respectively.Finally, the estimated uncertainties associated with the four storage protocolsare provided for untreated, heat-treated and filtered samples for INPsbetween −9 and −17 ∘C.more » « less
-
Abstract. Ice nucleating particles (INP) have been found to influence the amount, phase, and efficiency of precipitation from winter storms, including atmospheric rivers. Warm INP, those that initiate freezing at temperatures warmer than −10°C, are thought to be particularly impactful because they can create primary ice in mixed-phase clouds, enhancing precipitation efficiency. The dominant sources of warm INP during atmospheric rivers, the role of meteorology in modulating transport and injection of warm INP into atmospheric river clouds and the impact of warm INP on mixed-phase cloud properties are not well-understood. Time-resolved precipitation samples were collected during an atmospheric river in Northern California, USA during winter 2016. Precipitation was collected at two sites, one coastal and one inland, that are separated by less than 35km. The sites are sufficiently close that airmass sources during this storm were almost identical, but the inland site was exposed to terrestrial sources of warm INP while the coastal site was not. Warm INP were more numerous in precipitation at the inland site by an order of magnitude. Using FLEXPART dispersion modelling and radar-derived cloud vertical structure, we detected influence from terrestrial INP sources at the inland site, but did not find clear evidence of marine warm INP at either site. We episodically detected warm INP from long-range transported sources at both sites. By extending the FLEXPART modelling using a meteorological reanalysis, we demonstrate that long-range transported warm INP are observed only when the upper tropospheric jet provided transport to cloud tops. Using radar-derived hydrometeor classifications, we demonstrate that hydrometeors over the terrestrially-influenced inland site were more likely to be in the ice phase for cloud temperatures between 0°C and −10°C. We thus conclude that terrestrial and long-range transported aerosol were important sources of warm INP during this atmospheric river. Meteorological details such as transport mechanism and cloud structure were important in determining warm INP source strength and injection temperature, and ultimately the impact of warm INP on mixed phase cloud properties.more » « less
An official website of the United States government
