skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 AM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Luo, Jiebo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In a connected world, fair graph learning is becoming increasingly important because of the growing concerns about bias. Yet, the vast majority of existing works assume that the input graph comes from a single view while ignoring the multi-view essence of graphs. Generally speaking, the bias in graph mining is often rooted in the input graph and is further introduced or even amplified by the graph mining model. It thus poses critical research questions regarding the intrinsic relationships of fairness on different views and the possibility of mitigating bias on multiple views simultaneously. To answer these questions, in this paper, we explore individual fairness in multi-view graph mining. We first demonstrate the necessity of fair multi-view graph learning. Building upon the optimization perspective of fair single-view graph mining, we then formulate our problem as a linear weighted optimization problem. In order to figure out the weight of each view, we resort to the minimax Pareto fairness, which is closely related to the Rawlsian difference principle, and propose an effective solver named iFiG that minimizes the utility loss while promoting individual fairness for each view with two different instantiations. The extensive experiments that we conduct in the application of multi-view spectral clustering and INFORM post-processing demonstrate the efficacy of our proposed method in individual bias mitigation. 
    more » « less
  2. Graph Convolutional Network (GCN) plays pivotal roles in many real-world applications. Despite the successes of GCN deployment, GCN often exhibits performance disparity with respect to node de- grees, resulting in worse predictive accuracy for low-degree nodes. We formulate the problem of mitigating the degree-related per- formance disparity in GCN from the perspective of the Rawlsian difference principle, which is originated from the theory of distribu- tive justice. Mathematically, we aim to balance the utility between low-degree nodes and high-degree nodes while minimizing the task- specific loss. Specifically, we reveal the root cause of this degree- related unfairness by analyzing the gradients of weight matrices in GCN. Guided by the gradients of weight matrices, we further propose a pre-processing method RawlsGCN-Graph and an in- processing method RawlsGCN-Grad that achieves fair predictive accuracy in low-degree nodes without modification on the GCN architecture or introduction of additional parameters. Extensive experiments on real-world graphs demonstrate the effectiveness of our proposed RawlsGCN methods in significantly reducing degree- related bias while retaining comparable overall performance. 
    more » « less
  3. null (Ed.)