skip to main content

Search for: All records

Creators/Authors contains: "Luo, Rui"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 1, 2023
  2. This paper studies controlling segregation in social networks via exogenous incentives. We construct an edge formation game on a directed graph. A user (node) chooses the probability with which it forms an inter- or intra- community edge based on a utility function that reflects the tradeoff between homophily (preference to connect with individuals that belong to the same group) and the preference to obtain an exogenous incentive. Decisions made by the users to connect with each other determine the evolution of the social network. We explore an algorithmic recommendation mechanism where the exogenous incentive in the utility function is based on weak ties which incentivizes users to connect across communities and mitigates the segregation. This setting leads to a submodular game with a unique Nash equilibrium. In numerical simulations, we explore how the proposed model can be useful in controlling segregation and echo chambers in social networks under various settings.
    Free, publicly-accessible full text available March 28, 2023
  3. When a mixture of viscous oil and non-colloidal particles displaces air between two parallel plates, the shear-induced migration of particles leads to the gradual accumulation of particles on the advancing oil–air interface. This particle accumulation results in the fingering of an otherwise stable fluid–fluid interface. While previous works have focused on the resultant instability, one unexplored yet striking feature of the experiments is the self-similarity in the concentration profile of the accumulating particles. In this paper, we rationalise this self-similar behaviour by deriving a depth-averaged particle transport equation based on the suspension balance model, following the theoretical framework of Ramachandran ( J. Fluid Mech. , vol. 734, 2013, pp. 219–252). The solutions to the particle transport equation are shown to be self-similar with slight deviations, and in excellent agreement with experimental observations. Our results demonstrate that the combination of the shear-induced migration, the advancing fluid–fluid interface and Taylor dispersion yield the self-similar and gradual accumulation of particles.
  4. Abstract

    Consensus on the cause of recent midlatitude circulation changes toward a wavier manner in the Northern Hemisphere has not been reached, albeit a number of studies collectively suggest that this phenomenon is driven by global warming and associated Arctic amplification. Here, through a fingerprint analysis of various global simulations and a tropical heating-imposed experiment, we suggest that the suppression of tropical convection along the Inter Tropical Convergence Zone induced by sea surface temperature (SST) cooling trends over the tropical Eastern Pacific contributed to the increased summertime midlatitude waviness in the past 40 years through the generation of a Rossby-wave-train propagating within the jet waveguide and the reduced north-south temperature gradient. This perspective indicates less of an influence from the Arctic amplification on the observed mid-latitude wave amplification than what was previously estimated. This study also emphasizes the need to better predict the tropical Pacific SST variability in order to project the summer jet waviness and consequent weather extremes.

  5. Abstract We present the localization and host galaxies of one repeating and two apparently nonrepeating fast radio bursts (FRBs). FRB 20180301A was detected and localized with the Karl G. Jansky Very Large Array to a star-forming galaxy at z = 0.3304. FRB20191228A and FRB20200906A were detected and localized by the Australian Square Kilometre Array Pathfinder to host galaxies at z = 0.2430 and z = 0.3688, respectively. We combine these with 13 other well-localized FRBs in the literature, and analyze the host galaxy properties. We find no significant differences in the host properties of repeating and apparently nonrepeating FRBs. FRB hosts are moderately star forming, with masses slightly offset from the star-forming main sequence. Star formation and low-ionization nuclear emission-line region emission are major sources of ionization in FRB host galaxies, with the former dominant in repeating FRB hosts. FRB hosts do not track stellar mass and star formation as seen in field galaxies (more than 95% confidence). FRBs are rare in massive red galaxies, suggesting that progenitor formation channels are not solely dominated by delayed channels which lag star formation by gigayears. The global properties of FRB hosts are indistinguishable from core-collapse supernovae and short gamma-ray bursts hosts, andmore »the spatial offset (from galaxy centers) of FRBs is mostly inconsistent with that of the Galactic neutron star population (95% confidence). The spatial offsets of FRBs (normalized to the galaxy effective radius) also differ from those of globular clusters in late- and early-type galaxies with 95% confidence.« less
  6. Abstract Arctic sea ice melting processes in summer due to internal atmospheric variability have recently received considerable attention. A regional barotropic atmospheric process over Greenland and the Arctic Ocean in summer (June–August), featuring either a year-to-year change or a low-frequency trend toward geopotential height rise, has been identified as an essential contributor to September sea ice loss, in both observations and the CESM1 Large Ensemble (CESM-LE) of simulations. This local melting is further found to be sensitive to remote sea surface temperature (SST) variability in the east-central tropical Pacific Ocean. Here, we utilize five available large “initial condition” Earth system model ensembles and 31 CMIP5 models’ preindustrial control simulations to show that the same atmospheric process, resembling the observed one and the one found in the CESM-LE, also dominates internal sea ice variability in summer on interannual to interdecadal time scales in preindustrial, historical, and future scenarios, regardless of the modeling environment. However, all models exhibit limitations in replicating the magnitude of the observed local atmosphere–sea ice coupling and its sensitivity to remote tropical SST variability in the past four decades. These biases call for caution in the interpretation of existing models’ simulations and fresh thinking about models’ credibility inmore »simulating interactions of sea ice variability with the Arctic and global climate systems. Further efforts toward identifying the causes of these model limitations may provide implications for alleviating the biases and improving interannual- and decadal-time-scale sea ice prediction and future sea ice projection.« less
  7. Lithium niobate (LN), possessing wide transparent window, strong electro-optic effect, and large optical nonlinearity, is an ideal material platform for integrated photonics application. Microring resonators are particularly suitable as integrated photonic components, given their flexibility of device engineering and their potential for large-scale integration. However, the susceptibility to temperature fluctuation has become a major challenge for their implementation in a practical environment. Here, we demonstrate an athermal LN microring resonator. By cladding an x-cut LN microring resonator with a thin layer of titanium oxide, we are able to completely eliminate the first-order thermo-optic coefficient (TOC) of cavity resonance right at room temperature (20°C), leaving only a small residual quadratic temperature dependence with a second-order TOC of only 0.37 pm/K2. It corresponds to a temperature-induced resonance wavelength shift within 0.33 nm over a large operating temperature range of (−10 – 50)°C that is one order of magnitude smaller than a bare LN microring resonator. Moreover, the TiO2-cladded LN microring resonator is able to preserve high optical quality, with an intrinsic optical Q of 5.8 × 105that is only about 11% smaller than that of a bare LN resonator. The flexibility of thermo-optic engineering, high optical quality, and device fabrication compatibility show great promisemore »of athermal LN/TiO2hybrid devices for practical applications, elevating the potential importance of LN photonic integrated circuits for future communication, sensing, nonlinear and quantum photonics.

    « less