skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ma, Y G"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 1, 2026
  2. Free, publicly-accessible full text available January 1, 2026
  3. Free, publicly-accessible full text available December 1, 2025
  4. Abstract Atomic nuclei are self-organized, many-body quantum systems bound by strong nuclear forces within femtometre-scale space. These complex systems manifest a variety of shapes1–3, traditionally explored using non-invasive spectroscopic techniques at low energies4,5. However, at these energies, their instantaneous shapes are obscured by long-timescale quantum fluctuations, making direct observation challenging. Here we introduce the collective-flow-assisted nuclear shape-imaging method, which images the nuclear global shape by colliding them at ultrarelativistic speeds and analysing the collective response of outgoing debris. This technique captures a collision-specific snapshot of the spatial matter distribution within the nuclei, which, through the hydrodynamic expansion, imprints patterns on the particle momentum distribution observed in detectors6,7. We benchmark this method in collisions of ground-state uranium-238 nuclei, known for their elongated, axial-symmetric shape. Our findings show a large deformation with a slight deviation from axial symmetry in the nuclear ground state, aligning broadly with previous low-energy experiments. This approach offers a new method for imaging nuclear shapes, enhances our understanding of the initial conditions in high-energy collisions and addresses the important issue of nuclear structure evolution across energy scales. 
    more » « less
    Free, publicly-accessible full text available November 7, 2025
  5. The first measurements of proton emission accompanied by neutron emission in the electromagnetic dissociation (EMD) of Pb 208 nuclei in the ALICE experiment at the Large Hadron Collider are presented. The EMD protons and neutrons emitted at very forward rapidities are detected by the proton and neutron zero degree calorimeters of the ALICE experiment. The emission cross sections of zero, one, two, and three protons accompanied by at least one neutron were measured in ultraperipheral Pb 208 Pb 208 collisions at a center-of-mass energy per nucleon pair s N N = 5.02 TeV . The 0p and 3p cross sections are described by the RELDIS model within their measurement uncertainties, while the 1p and 2p cross sections are underestimated by the model by 17–25%. According to this model, these 0p, 1p, 2p, and 3p cross sections are associated, respectively, with the production of various isotopes of Pb, Tl, Hg, and Au in the EMD of Pb 208 . The cross sections of the emission of a single proton accompanied by the emission of one, two, or three neutrons in EMD were also measured. The data are significantly overestimated by the RELDIS model, which predicts that the (1p,1n), (1p,2n), and (1p,3n) cross sections are very similar to the cross sections for the production of the thallium isotopes Tl 206 , 205 , 204 . ©2025 CERN, for the ALICE Collaboration2025CERN 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  6. Abstract The ALICE Collaboration at the CERN LHC has measured the inclusive production cross section of isolated photons at midrapidity as a function of the photon transverse momentum ($$p_{\textrm{T}}^{\gamma }$$ p T γ ), in Pb–Pb collisions in different centrality intervals, and in pp collisions, at centre-of-momentum energy per nucleon pair of$$\sqrt{s_{\textrm{NN}}}~=~5.02$$ s NN = 5.02  TeV. The photon transverse momentum range is between 10–14 and 40–140 GeV/$$c$$ c , depending on the collision system and on the Pb–Pb centrality class. The result extends to lower$$p_{\textrm{T}}^{\gamma }$$ p T γ than previously published results by the ATLAS and CMS experiments at the same collision energy. The covered pseudorapidity range is$$|\eta ^{\gamma } | <0.67$$ | η γ | < 0.67 . The isolation selection is based on a charged particle isolation momentum threshold$$p_{\textrm{T}}^\mathrm{iso,~ch} = 1.5$$ p T iso , ch = 1.5  GeV/$$c$$ c within a cone of radii$$R=0.2$$ R = 0.2 and 0.4. The nuclear modification factor is calculated and found to be consistent with unity in all centrality classes, and also consistent with the HG-PYTHIA model, which describes the event selection and geometry biases that affect the centrality determination in peripheral Pb–Pb collisions. The measurement is compared to next-to-leading order perturbative QCD calculations and to the measurements of isolated photons and Z$$^{0}$$ 0 bosons from the CMS experiment, which are all found to be in agreement. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  7. Free, publicly-accessible full text available November 1, 2025
  8. A<sc>bstract</sc> ThepT-differential cross section ofωmeson production in pp collisions at$$ \sqrt{s} $$ s = 13 TeV at midrapidity (|y| <0.5) was measured with the ALICE detector at the LHC, covering an unprecedented transverse-momentum range of 1.6< pT<50 GeV/c. The meson is reconstructed via theω→π+ππ0decay channel. The results are compared with various theoretical calculations: PYTHIA8.2 with the Monash 2013 tune overestimates the data by up to 50%, whereas good agreement is observed with Next-to-Leading Order (NLO) calculations incorporatingωfragmentation using a broken SU(3) model. Theω/π0ratio is presented and compared with theoretical calculations and the available measurements at lower collision energies. The presented data triples thepTranges of previously available measurements. A constant ratio ofCω/π0= 0.578 ± 0.006 (stat.) ± 0.013 (syst.) is found above a transverse momentum of 4 GeV/c, which is in agreement with previous findings at lower collision energies within the systematic and statistical uncertainties. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  9. In this Letter, the first evidence of the He ¯ Λ ¯ 4 antihypernucleus is presented, along with the first measurement at the LHC of the production of (anti)hypernuclei with mass number A = 4 , specifically ( anti ) H Λ 4 and ( anti ) He Λ 4 . In addition, the antiparticle-to-particle ratios for both hypernuclei ( H ¯ Λ ¯ 4 / H Λ 4 and He ¯ Λ ¯ 4 / He Λ 4 ) are shown, which are sensitive to the baryochemical potential of the strongly interacting matter created in heavy-ion collisions. The results are obtained from a data sample of central Pb-Pb collisions, collected during the 2018 LHC data taking at a center-of-mass energy per nucleon pair of s NN = 5.02 TeV . The yields measured for the average of the charge-conjugated states are found to be [ 0.78 ± 0.19 ( stat ) ± 0.17 ( syst ) ] × 10 6 for the ( anti ) H Λ 4 and [ 1.08 ± 0.34 ( stat ) ± 0.20 ( syst ) ] × 10 6 for the ( anti ) He Λ 4 , and the measured antiparticle-to-particle ratios are in agreement with unity. The presence of ( anti ) H Λ 4 and ( anti ) He Λ 4 excited states is expected to strongly enhance the production yield of these hypernuclei. The yield values exhibit a combined deviation of 3.3 σ from the theoretical ground-state-only expectation, while the inclusion of the excited states in the calculations leads to an agreement within 0.6 σ with the present measurements. Additionally, the measured ( anti ) H Λ 4 and ( anti ) He Λ 4 masses are compatible with the world-average values within the uncertainties. © 2025 CERN, for the ALICE Collaboration2025CERN 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  10. A<sc>bstract</sc> We report multi-differential measurements of strange hadron production ranging from mid- to target-rapidity in Au+Au collisions at a center-of-momentum energy per nucleon pair of$$ \sqrt{s_{\textrm{NN}}} $$ s NN = 3 GeV with the STAR experiment at RHIC.$$ {K}_S^0 $$ K S 0 meson and Λ hyperon yields are measured via their weak decay channels. Collision centrality and rapidity dependences of the transverse momentum spectra and particle ratios are presented. Particle mass and centrality dependence of the average transverse momenta of Λ and$$ {K}_S^0 $$ K S 0 are compared with other strange particles, providing evidence of the development of hadronic rescattering in such collisions. The 4πyields of each of these strange hadrons show a consistent centrality dependence. Discussions on radial flow, the strange hadron production mechanism, and properties of the medium created in such collisions are presented together with results from hadronic transport and thermal model calculations. 
    more » « less
    Free, publicly-accessible full text available October 1, 2025