skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, July 11 until 2:00 AM ET on Saturday, July 12 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Ma, Yi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 31, 2026
  2. Free, publicly-accessible full text available December 10, 2025
  3. Free, publicly-accessible full text available July 21, 2025
  4. We prove that black-box variational infer- ence (BBVI) with control variates, particularly the sticking-the-landing (STL) estima- tor, converges at a geometric (traditionally called โ€œlinearโ€) rate under perfect variational family specification. In particular, we prove a quadratic bound on the gradient variance of the STL estimator, one which encompasses misspecified variational families. Combined with previous works on the quadratic variance condition, this directly implies convergence of BBVI with the use of projected stochastic gradient descent. For the projection operator, we consider a domain with triangular scale matrices, which the pro jection onto is computable in O(๐‘‘) time, where ๐‘‘ is the dimensionality of the target posterior. We also improve existing analysis on the reg- ular closed-form entropy gradient estimators, which enables comparison against the STL estimator, providing explicit non-asymptotic complexity guarantees for both. 
    more » « less
  5. The maximal coding rate reduction (MCR2) objective for learning structured and compact deep representations is drawing increasing attention, especially after its recent usage in the derivation of fully explainable and highly effective deep network architectures. However, it lacks a complete theoretical justification: only the properties of its global optima are known, and its global landscape has not been studied. In this work, we give a complete characterization of the properties of all its local and global optima, as well as other types of critical points. Specifically, we show that each (local or global) maximizer of the MCR2 problem corresponds to a low-dimensional, discriminative, and diverse representation, and furthermore, each critical point of the objective is either a local maximizer or a strict saddle point. Such a favorable landscape makes MCR2 a natural choice of objective for learning diverse and discriminative representations via first-order optimization methods. To validate our theoretical findings, we conduct extensive experiments on both synthetic and real data sets. 
    more » « less