skip to main content

Search for: All records

Creators/Authors contains: "MacKenzie, J. Devin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Abstract

    Additive manufacturing at the micron and sub‐micron scale is a rapidly expanding field with electrohydrodynamic inkjet (EHDIJ) printing proving to be a critical fabrication technique that will enable continued advancement. Increasing the range of materials that can be used with EHDIJ printing to create micron and sub‐micron scale features is critical for increasing the variety of devices that can be fabricated with this method. Ceramic, semiconducting, and hybrid organic–inorganic materials are essential for meta‐optics and micro‐electromechanical systems devices, yet these materials are vastly underexplored for applications in EHDIJ printing. A novel printing solution is presented containing a titania alkoxide precursor that is compatible with EHDIJ printing and capable of producing final printed features of 1 µm and below; the highest resolution features ever reported for this family of materials and this method. This solution is used to fabricate the first EHDIJ printed and functioning mid‐infrared meta‐optics lens, capable of focusing 5 µm light.

    more » « less
  3. Luminescent solar concentrators (LSCs) can concentrate direct and diffuse solar radiation spatially and energetically to help reduce the overall area of solar cells needed to meet current energy demands. LSCs require luminophores that absorb large fractions of the solar spectrum, emit photons into a light-capture medium with high photoluminescence quantum yields (PLQYs), and do not absorb their own photoluminescence. Luminescent nanocrystals (NCs) with near or above unity PLQYs and Stokes shifts large enough to avoid self-absorption losses are well-suited to meet these needs. In this work, we describe LSCs based on quantum-cutting Yb 3+ :CsPb(Cl 1−x Br x ) 3 NCs that have documented PLQYs as high as ∼200%. Through a combination of solution-phase 1D LSC measurements and modeling, we demonstrate that Yb 3+ :CsPbCl 3 NC LSCs show negligible intrinsic reabsorption losses, and we use these data to model the performance of large-scale 2D LSCs based on these NCs. We further propose a new and unique monolithic bilayer LSC device architecture that contains a Yb 3+ :CsPb(Cl 1−x Br x ) 3 NC top layer above a second narrower-gap LSC bottom layer ( e.g. , based on CuInS 2 NCs), both within the same waveguide and interfaced with the same Si PV for conversion. We extend the modeling to predict the flux gains of such bilayer devices. Because of the exceptionally high PLQYs of Yb 3+ :CsPb(Cl 1−x Br x ) 3 NCs, the optimized bilayer device has a projected flux gain of 63 for dimensions of 70 × 70 × 0.1 cm 3 , representing performance enhancement of at least 19% over the optimized CuInS 2 LSC alone. 
    more » « less