Yb 3+ -Doped lead-halide perovskites (Yb 3+ :CsPb(Cl 1−x Br x ) 3 ) have emerged as unique materials combining strong, tunable broadband absorption with near-infrared photoluminescence quantum yields (PLQYs) approaching 200% at ambient temperature. These remarkable properties make Yb 3+ :CsPb(Cl 1−x Br x ) 3 an extremely promising candidate for spectral shaping in high-efficiency photovoltaic devices. Previous theoretical assessments of such “downconversion” devices have predicted single-junction efficiencies up to 40%, but have been highly idealized. Real materials like Yb 3+ :CsPb(Cl 1−x Br x ) 3 have practical limitations such as constrained band-gap and PL energies, non-directional emission, and an excitation-power-dependent PLQY. Hence, it is unclear whether Yb 3+ :CsPb(Cl 1−x Br x ) 3 , or any other non-ideal quantum-cutting material, can indeed boost the efficiencies of real high-performance PV. Here, we examine the thermodynamic, detailed-balance efficiency limit of Yb 3+ :CsPb(Cl 1−x Br x ) 3 on different existing PV under real-world conditions. Among these, we identify silicon heterojunction technology as very promising for achieving significant performance gains when paired with Yb 3+ :CsPb(Cl 1−x Br x ) 3 , and we predict power-conversion efficiencies of up to 32% for this combination. Surprisingly, PL saturation does not negate the improved device performance. Calculations accounting for actual hourly incident solar photon fluxes show that Yb 3+ :CsPb(Cl 1−x Br x ) 3 boosts power-conversion efficiencies at all times of day and year in two representative geographic locations. Predicted annual energy yields are comparable to those of tandem perovskite-on-silicon technologies, but without the need for current matching, tracking, or additional electrodes and inverters. In addition, we show that band-gap optimization in real quantum cutters is inherently a function of their PLQY and the ability to capture that PL. These results provide key design rules needed for development of high-efficiency quantum-cutting photovoltaic devices based on Yb 3+ :CsPb(Cl 1−x Br x ) 3 . 
                        more » 
                        « less   
                    
                            
                            Quantum-cutting Yb 3+ -doped perovskite nanocrystals for monolithic bilayer luminescent solar concentrators
                        
                    
    
            Luminescent solar concentrators (LSCs) can concentrate direct and diffuse solar radiation spatially and energetically to help reduce the overall area of solar cells needed to meet current energy demands. LSCs require luminophores that absorb large fractions of the solar spectrum, emit photons into a light-capture medium with high photoluminescence quantum yields (PLQYs), and do not absorb their own photoluminescence. Luminescent nanocrystals (NCs) with near or above unity PLQYs and Stokes shifts large enough to avoid self-absorption losses are well-suited to meet these needs. In this work, we describe LSCs based on quantum-cutting Yb 3+ :CsPb(Cl 1−x Br x ) 3 NCs that have documented PLQYs as high as ∼200%. Through a combination of solution-phase 1D LSC measurements and modeling, we demonstrate that Yb 3+ :CsPbCl 3 NC LSCs show negligible intrinsic reabsorption losses, and we use these data to model the performance of large-scale 2D LSCs based on these NCs. We further propose a new and unique monolithic bilayer LSC device architecture that contains a Yb 3+ :CsPb(Cl 1−x Br x ) 3 NC top layer above a second narrower-gap LSC bottom layer ( e.g. , based on CuInS 2 NCs), both within the same waveguide and interfaced with the same Si PV for conversion. We extend the modeling to predict the flux gains of such bilayer devices. Because of the exceptionally high PLQYs of Yb 3+ :CsPb(Cl 1−x Br x ) 3 NCs, the optimized bilayer device has a projected flux gain of 63 for dimensions of 70 × 70 × 0.1 cm 3 , representing performance enhancement of at least 19% over the optimized CuInS 2 LSC alone. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10090279
- Date Published:
- Journal Name:
- Journal of Materials Chemistry A
- ISSN:
- 2050-7488
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract The integration of highly luminescent CsPbBr3quantum dots on nanowire waveguides has enormous potential applications in nanophotonics, optical sensing, and quantum communications. On the other hand, CsPb2Br5nanowires have also attracted a lot of attention due to their unique water stability and controversial luminescent property. Here, the growth of CsPbBr3nanocrystals on CsPb2Br5nanowires is reported first by simply immersing CsPbBr3powder into pure water, CsPbBr3−γ Xγ(X = Cl, I) nanocrystals on CsPb2Br5−γ Xγnanowires are then synthesized for tunable light sources. Systematic structure and morphology studies, including in situ monitoring, reveal that CsPbBr3powder is first converted to CsPb2Br5microplatelets in water, followed by morphological transformation from CsPb2Br5microplatelets to nanowires, which is a kinetic dissolution–recrystallization process controlled by electrolytic dissociation and supersaturation of CsPb2Br5. CsPbBr3nanocrystals are spontaneously formed on CsPb2Br5nanowires when nanowires are collected from the aqueous solution. Raman spectroscopy, combined photoluminescence, and SEM imaging confirm that the bright emission originates from CsPbBr3−γ Xγnanocrystals while CsPb2Br5−γ Xγnanowires are transparent waveguides. The intimate integration of nanoscale light sources with a nanowire waveguide is demonstrated through the observation of the wave guiding of light from nanocrystals and Fabry–Perot interference modes of the nanowire cavity.more » « less
- 
            ABSTRACT The use of luminescent solar concentrators (LSCs) offers an alternative approach to integrating photovoltaic technologies into the built environment. The research on LSCs has bloomed in the past decade in terms of searching for novel device architectures, developing new luminescent species, and employing unique host materials. This article will provide a concise review on LSCs and focus on the polymer host materials used in LSCs. Finally, we provide a brief outlook on the future development of this research area, particularly on the polymers used as host materials and luminescent species for LSCs. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem.2019,57, 201–215more » « less
- 
            null (Ed.)Lead-free perovskites and their analogues have been extensively studied as a class of next-generation luminescent and optoelectronic materials. Herein, we report the synthesis of new colloidal Cs 4 M( ii )Bi 2 Cl 12 (M( ii ) = Cd, Mn) nanocrystals (NCs) with unique luminescence properties. The obtained Cs 4 M( ii )Bi 2 Cl 12 NCs show a layered double perovskite (LDP) crystal structure with good particle stability. Density functional theory calculations show that both samples exhibit a wide, direct bandgap feature. Remarkably, the strong Mn–Mn coupling effect of the Cs 4 M( ii )Bi 2 Cl 12 NCs results in an ultra-short Mn photoluminescence (PL) decay lifetime of around 10 μs, around two orders of magnitude faster than commonly observed Mn 2+ dopant emission in NCs. Diluting the Mn 2+ ion concentration through forming Cs 4 (Cd 1−x Mn x )Bi 2 Cl 12 (0 < x < 1) alloyed LDP NCs leads to prolonged PL lifetimes and enhanced PL quantum yields. Our study provides the first synthetic example of Bi-based LDP colloidal NCs with potential for serving as a new category of stable lead-free perovskite-type materials for various applications.more » « less
- 
            We present a size-selective method for purifying and isolating perovskite CsPbBr 3 nanocrystals (NCs) that preserves their as-synthesized surface chemistry and extremely high photoluminescence quantum yields (PLQYs). The isolation procedure is based on the stepwise evaporation of nonpolar co-solvents with high vapor pressure to promote precipitation of a size-selected product. As the sample fractions become more uniform in size, we observe that the NCs self-assemble into colloidally stable, solution-phase superlattices (SLs). Small angle X-ray scattering (SAXS) and dynamic light scattering (DLS) studies show that the solution-phase SLs contain 1000s of NCs per supercrystal in a simple cubic, face-to-face packing arrangement. The SLs also display systematically faster radiative decay dynamics and improved PLQYs, as well as unique spectral absorption features likely resulting from inter-particle electronic coupling effects. This study is the first demonstration of solution-phase CsPbBr 3 SLs and highlights their potential for achieving collective optoelectronic phenomena previously observed from solid-state assemblies.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    