Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Thanks to substantial support for biodiversity data mobilization in recent decades, billions of occurrence records are openly available, documenting life on Earth and enabling timely research, awareness raising, and policy-making. Initiatives across local to global scales have been separately funded to serve different, yet often overlapping audiences of data users, and have developed a variety of platforms and infrastructures to meet the needs of these audiences. The independent progress of biodiversity data providers has led to innovations as well as challenges for the community at large as we move towards connecting and linking a diversity of information from disparate sources as Digital Extended Specimens (DES). Recognizing a need for deeper and more frequent opportunities for communication and collaboration across the globe, an ad-hoc group of representatives of various international, national, and regional organizations have been meeting virtually since 2020 to provide a forum for updates, announcements, and shared progress. This group is provisionally named International Partners for the Digital Extended Specimen (IPDES), and is guided by these four concepts: Biodiversity, Connection, Knowledge and Agency. Participants in IPDES include representatives of the Global Biodiversity Information Facility (GBIF), Integrated Digitized Biocollections (iDigBio), American Institute of Biological Sciences (AIBS), Biodiversity Collections Network (BCoN), Natural Science Collections Alliance (NSCA), Distributed System of Scientific Collections (DiSSCo), Atlas of Living Australia (ALA), Biodiversity Information Standards (TDWG), Society for the Preservation of Natural History Collections (SPNHC), National Specimen Information Infrastructure of China (NSII), and South African National Biodiversity Institute (SANBI), as well as individuals involved with biodiversity informatics initiatives, natural science collections, museums, herbaria, and universities. Our global partners group strives to increase representation from around the globe as we aim to enable research that contributes to novel discoveries and addresses the societal challenges leading to the biodiversity crisis. Our overarching mission is to expand on the community-driven successes to connect biodiversity data and knowledge through coordination of a globally integrated network of stakeholders to enable an extensible technical and social infrastructure of data, tools, and working practices in support of our vision. The main work of our group thus far includes publishing a paper on the Digital Extended Specimen (Hardisty et al. 2022), organizing and hosting an array of activities at conferences, and asynchronous online work and forum-based exchanges. We aim to advance discussion on topics of broad interest to our community such as social and technical capacity building, broadening participation, expanding social and data networks, improving data models and building a backbone for the DES, and identifying international funding solutions. This presentation will highlight some of these activities and detail progress towards a roadmap for the development of the human network and technical infrastructure necessary to support the DES. It provides an opportunity for feedback from and engagement by stakeholder communities such as TDWG and other initiatives with a focus on data standards and biodiversity informatics, as we solidify our plans for the future in support of integrated and interconnected biodiversity data and credit for those doing the work.more » « less
-
Abstract Critical to answering large-scale questions in biology is the integration of knowledge from different disciplines into a coherent, computable whole. Controlled vocabularies such as ontologies represent a clear path toward this goal. Using survey questionnaires, we examined the attitudes of biologists toward adopting controlled vocabularies in phenotype publications. Our questions cover current experience and overall attitude with controlled vocabularies, the awareness of the issues around ambiguity and inconsistency in phenotype descriptions and post-publication professional data curation, the preferred solutions and the effort and desired rewards for adopting a new authoring workflow. Results suggest that although the existence of controlled vocabularies is widespread, their use is not common. A majority of respondents (74%) are frustrated with ambiguity in phenotypic descriptions, and there is a strong agreement (mean agreement score 4.21 out of 5) that author curation would better reflect the original meaning of phenotype data. Moreover, the vast majority (85%) of researchers would try a new authoring workflow if resultant data were more consistent and less ambiguous. Even more respondents (93%) suggested that they would try and possibly adopt a new authoring workflow if it required 5% additional effort as compared to normal, but higher rates resulted in a steep decline in likely adoption rates. Among the four different types of rewards, two types of citations were the most desired incentives for authors to produce computable data. Overall, our results suggest the adoption of a new authoring workflow would be accelerated by a user-friendly and efficient software-authoring tool, an increased awareness of the challenges text ambiguity creates for external curators and an elevated appreciation of the benefits of controlled vocabularies.more » « less
-
Taxonomic treatments start with the creation of taxon-by-character matrices. Systematics authors recognized data ambiguity issues in published phenotypic characters and are willing to adopt an ontology-aware authoring tool (Cui et al. 2022). To promote interoperable and reusable taxonomic treatments, we have developed two research prototypes: a web-based application, Character Recorder (http://chrecorder.lusites.xyz/login), to faciliate the use and addition of ontology terms by Carex systematist authors while building their matrices, and a mobile application, Conflict Resolver (Android, https://tinyurl.com/5cfatrz8), to identify potential conflicts among the terms added by the authors and facilitate the resolution of the conflicts. We have completed two usability studies on Character Recorder. a web-based application, Character Recorder (http://chrecorder.lusites.xyz/login), to faciliate the use and addition of ontology terms by Carex systematist authors while building their matrices, and a mobile application, Conflict Resolver (Android, https://tinyurl.com/5cfatrz8), to identify potential conflicts among the terms added by the authors and facilitate the resolution of the conflicts. We have completed two usability studies on Character Recorder. In the one-hour Student Usabiilty Study, 16 third-year biology students with a general introduction to Carex used Character Recorder and Excel to record a set of 11 given characters for two samples (shape of sheath summits = U-shaped/U shaped). In the three-day Expert Usability Study, 7 established Carex systematists and 1 graduate student with expert-level knowledge used Character Recorder to record characters for 1 sample each of Carex canesens and Carex rostrata as they would in their professional life, using real mounted specimens, microscope, reticles, and rulers. Experts activities were not timed but they spent roughly 1.5 days on recording the characters and the rest of time discussing features and improvements. Features of Character Recorder have been reported in 2021 TDWG meeting and we included here only a few figures to highlight its interoperability and reusability features at the time of the usability studies (Fig. 1, Fig. 2, and Fig. 3). The Carex Ontology accompanying Character Recorder was created by extracting terms from Carex treatments of Flora of China and Flora of North America using Explorer of Taxon Concept (Cui et al. 2016) with subsequent manual edits. The design principle of Character Recorder is to encourage standardization and also leave the authors the freedom to do their work. While it took students an average of 6 minutes to recover all the given characters using Microsoft® Excel®, as opposed to 11 minutes using Character Recorder, the total number of unique meaning-bearing words used in their characters was 116 with Excel versus 30 with Character Recorder, showing the power of the latter in reducing synonyms and spelling variations. All students reported that they learned to use Character Recorder quickly and some even thought their use was as fast or faster than using Excel. All preferred Character Recorder to Excel for teaching students to record character data. Nearly all of the students found Character Recorder was more useful for recording clear and consistent data and all students agreed that participating in this study raised their awareness of data variation issues. The expert group consisted of 3, 2, 1, 3 experts in age ranges 20-49, 50-59, 60-69, and >69, respectively. They each recorded over 100 characters for two or more samples. Detailed analysis of their characters is pending, but we have noticed color characters have more variations than other characters (Fig. 4). All experts reported that they learned to use Character Recorder quickly, and 6 out of 8 believed they would not need a tutorial the next time they used it. One out of 8 experts somewhat disliked the feature of reusing others' values ("Use This" in Fig. 2) as it may undermine the objectivity and independence of an author. All experts used Recommended Set of Characters and they liked the term suggestion and illustration features shown in Figs 2, 3. All experts would recommend that their colleagues try Character Recorder and recommended that it be further developed and integrated into every taxonomist's toolbox. Student and expert responses to the National Aeronautics and Space Administration Task Load Index (NASA-TLX, Hart and Staveland 1988) are summarized in Fig. 5, which suggests that, while Character Recorder may incur in a slightly higher cost, the performance it supports outweighs its cost, especially for students. Every piece of the software prototypes and associated resources are open for anyone to access or further develop. We thank all student and expert participants and US National Science Foundation for their support in this research. We thank Harris & Harris and Presses de l'Université Laval for the permissions to use their phenotype illustrations in Character Recorder.more » « less
-
It takes great effort to manually or semi-automatically convert free-text phenotype narratives (e.g., morphological descriptions in taxonomic works) to a computable format before they can be used in large-scale analyses. We argue that neither a manual curation approach nor an information extraction approach based on machine learning is a sustainable solution to produce computable phenotypic data that are FAIR (Findable, Accessible, Interoperable, Reusable) (Wilkinson et al. 2016). This is because these approaches do not scale to all biodiversity, and they do not stop the publication of free-text phenotypes that would need post-publication curation. In addition, both manual and machine learning approaches face great challenges: the problem of inter-curator variation (curators interpret/convert a phenotype differently from each other) in manual curation, and keywords to ontology concept translation in automated information extraction, make it difficult for either approach to produce data that are truly FAIR. Our empirical studies show that inter-curator variation in translating phenotype characters to Entity-Quality statements (Mabee et al. 2007) is as high as 40% even within a single project. With this level of variation, curated data integrated from multiple curation projects may still not be FAIR. The key causes of this variation have been identified as semantic vagueness in original phenotype descriptions and difficulties in using standardized vocabularies (ontologies). We argue that the authors describing characters are the key to the solution. Given the right tools and appropriate attribution, the authors should be in charge of developing a project's semantics and ontology. This will speed up ontology development and improve the semantic clarity of the descriptions from the moment of publication. In this presentation, we will introduce the Platform for Author-Driven Computable Data and Ontology Production for Taxonomists, which consists of three components: a web-based, ontology-aware software application called 'Character Recorder,' which features a spreadsheet as the data entry platform and provides authors with the flexibility of using their preferred terminology in recording characters for a set of specimens (this application also facilitates semantic clarity and consistency across species descriptions); a set of services that produce RDF graph data, collects terms added by authors, detects potential conflicts between terms, dispatches conflicts to the third component and updates the ontology with resolutions; and an Android mobile application, 'Conflict Resolver,' which displays ontological conflicts and accepts solutions proposed by multiple experts. a web-based, ontology-aware software application called 'Character Recorder,' which features a spreadsheet as the data entry platform and provides authors with the flexibility of using their preferred terminology in recording characters for a set of specimens (this application also facilitates semantic clarity and consistency across species descriptions); a set of services that produce RDF graph data, collects terms added by authors, detects potential conflicts between terms, dispatches conflicts to the third component and updates the ontology with resolutions; and an Android mobile application, 'Conflict Resolver,' which displays ontological conflicts and accepts solutions proposed by multiple experts. Fig. 1 shows the system diagram of the platform. The presentation will consist of: a report on the findings from a recent survey of 90+ participants on the need for a tool like Character Recorder; a methods section that describes how we provide semantics to an existing vocabulary of quantitative characters through a set of properties that explain where and how a measurement (e.g., length of perigynium beak) is taken. We also report on how a custom color palette of RGB values obtained from real specimens or high-quality specimen images, can be used to help authors choose standardized color descriptions for plant specimens; and a software demonstration, where we show how Character Recorder and Conflict Resolver can work together to construct both human-readable descriptions and RDF graphs using morphological data derived from species in the plant genus Carex (sedges). The key difference of this system from other ontology-aware systems is that authors can directly add needed terms to the ontology as they wish and can update their data according to ontology updates. a report on the findings from a recent survey of 90+ participants on the need for a tool like Character Recorder; a methods section that describes how we provide semantics to an existing vocabulary of quantitative characters through a set of properties that explain where and how a measurement (e.g., length of perigynium beak) is taken. We also report on how a custom color palette of RGB values obtained from real specimens or high-quality specimen images, can be used to help authors choose standardized color descriptions for plant specimens; and a software demonstration, where we show how Character Recorder and Conflict Resolver can work together to construct both human-readable descriptions and RDF graphs using morphological data derived from species in the plant genus Carex (sedges). The key difference of this system from other ontology-aware systems is that authors can directly add needed terms to the ontology as they wish and can update their data according to ontology updates. The software modules currently incorporated in Character Recorder and Conflict Resolver have undergone formal usability studies. We are actively recruiting Carex experts to participate in a 3-day usability study of the entire system of the Platform for Author-Driven Computable Data and Ontology Production for Taxonomists. Participants will use the platform to record 100 characters about one Carex species. In addition to usability data, we will collect the terms that participants submit to the underlying ontology and the data related to conflict resolution. Such data allow us to examine the types and the quantities of logical conflicts that may result from the terms added by the users and to use Discrete Event Simulation models to understand if and how term additions and conflict resolutions converge. We look forward to a discussion on how the tools (Character Recorder is online at http://shark.sbs.arizona.edu/chrecorder/public) described in our presentation can contribute to producing and publishing FAIR data in taxonomic studies.more » « less
-
Abstract The early twenty-first century has witnessed massive expansions in availability and accessibility of digital data in virtually all domains of the biodiversity sciences. Led by an array of asynchronous digitization activities spanning ecological, environmental, climatological, and biological collections data, these initiatives have resulted in a plethora of mostly disconnected and siloed data, leaving to researchers the tedious and time-consuming manual task of finding and connecting them in usable ways, integrating them into coherent data sets, and making them interoperable. The focus to date has been on elevating analog and physical records to digital replicas in local databases prior to elevating them to ever-growing aggregations of essentially disconnected discipline-specific information. In the present article, we propose a new interconnected network of digital objects on the Internet—the Digital Extended Specimen (DES) network—that transcends existing aggregator technology, augments the DES with third-party data through machine algorithms, and provides a platform for more efficient research and robust interdisciplinary discovery.more » « less
-
null (Ed.)Abstract Producing findable, accessible, interoperable and reusable (FAIR) data cannot be accomplished solely by data curators in all disciplines. In biology, we have shown that phenotypic data curation is not only costly, but it is burdened with inter-curator variation. We intend to propose a software platform that would enable all data producers, including authors of scientific publications, to produce ontologized data at the time of publication. Working toward this goal, we need to identify ontology construction methods that are preferred by end users. Here, we employ two usability studies to evaluate effectiveness, efficiency and user satisfaction with a set of four methods that allow an end user to add terms and their relations to an ontology. Thirty-three participants took part in a controlled experiment where they evaluated the four methods (Quick Form, Wizard, WebProtégé and Wikidata) after watching demonstration videos and completing a hands-on task. Another think-aloud study was conducted with three professional botanists. The efficiency effectiveness and user confidence in the methods are clearly revealed through statistical and content analyses of participants’ comments. Quick Form, Wizard and WebProtégé offer distinct strengths that would benefit our author-driven FAIR data generation system. Features preferred by the participants will guide the design of future iterations.more » « less
-
Summary High‐quality microbiome research relies on the integrity, management and quality of supporting data. Currently biobanks and culture collections have different formats and approaches to data management. This necessitates a standard data format to underpin research, particularly in line with the FAIR data standards of findability, accessibility, interoperability and reusability. We address the importance of a unified, coordinated approach that ensures compatibility of data between that needed by biobanks and culture collections, but also to ensure linkage between bioinformatic databases and the wider research community.more » « less
-
Phenotypes are used for a multitude of purposes such as defining species, reconstructing phylogenies, diagnosing diseases or improving crop and animal productivity, but most of this phenotypic data is published in free-text narratives that are not computable. This means that the complex relationship between the genome, the environment and phenotypes is largely inaccessible to analysis and important questions related to the evolution of organisms, their diseases or their response to climate change cannot be fully addressed. It takes great effort to manually convert free-text narratives to a computable format before they can be used in large-scale analyses. We argue that this manual curation approach is not a sustainable solution to produce computable phenotypic data for three reasons: 1) it does not scale to all of biodiversity; 2) it does not stop the publication of free-text phenotypes that will continue to need manual curation in the future and, most importantly, 3) It does not solve the problem of inter-curator variation (curators interpret/convert a phenotype differently from each other). Our empirical studies have shown that inter-curator variation is as high as 40% even within a single project. With this level of variation, it is difficult to imagine that data integrated from multiple curation projects can be of high quality. The key causes of this variation have been identified as semantic vagueness in original phenotype descriptions and difficulties in using standardised vocabularies (ontologies). We argue that the authors describing phenotypes are the key to the solution. Given the right tools and appropriate attribution, the authors should be in charge of developing a project’s semantics and ontology. This will speed up ontology development and improve the semantic clarity of phenotype descriptions from the moment of publication. A proof of concept project on this idea was funded by NSF ABI in July 2017. We seek readers input or critique of the proposed approaches to help achieve community-based computable phenotype data production in the near future. Results from this project will be accessible through https://biosemantics.github.io/author-driven-production.more » « less