skip to main content


Search for: All records

Creators/Authors contains: "Madanayake, Arjuna"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The radio spectrum is a scarce and extremely valuable resource that demands careful real-time monitoring and dynamic resource allocation. Dynamic spectrum access (DSA) is a new paradigm for managing the radio spectrum, which requires AI/ML-driven algorithms for optimum performance under rapidly changing channel conditions and possible cyber-attacks in the electromagnetic domain. Fast sensing across multiple directions using array processors, with subsequent AI/ML-based algorithms for the sensing and perception of waveforms that are measured from the environment is critical for providing decision support in DSA. As part of directional and wideband spectrum perception, the ability to finely channelize wideband inputs using efficient Fourier analysis is much needed. However, a fine-grain fast Fourier transform (FFT) across a large number of directions is computationally intensive and leads to a high chip area and power consumption. We address this issue by exploiting the recently proposed approximate discrete Fourier transform (ADFT), which has its own sparse factorization for real-time implementation at a low complexity and power consumption. The ADFT is used to create a wideband multibeam RF digital beamformer and temporal spectrum-based attention unit that monitors 32 discrete directions across 32 sub-bands in real-time using a multiplierless algorithm with low computational complexity. The output of this spectral attention unit is applied as a decision variable to an intelligent receiver that adapts its center frequency and frequency resolution via FFT channelizers that are custom-built for real-time monitoring at high resolution. This two-step process allows the fine-gain FFT to be applied only to directions and bands of interest as determined by the ADFT-based low-complexity 2D spacetime attention unit. The fine-grain FFT provides a spectral signature that can find future use cases in neural network engines for achieving modulation recognition, IoT device identification, and RFI identification. Beamforming and spectral channelization algorithms, a digital computer architecture, and early prototypes using a 32-element fully digital multichannel receiver and field programmable gate array (FPGA)-based high-speed software-defined radio (SDR) are presented.

     
    more » « less
    Free, publicly-accessible full text available August 1, 2025
  2. Free, publicly-accessible full text available January 1, 2025
  3. The emerging concept of drone swarms creates new opportunities with major societal implications. However, future drone swarm applications and services pose new communications and sensing challenges, particularly for collaborative tasks. To address these challenges, in this paper, we integrate sensor arrays and communication to propose a mathematical model to route a collection of autonomous unmanned aerial systems (AUAS), a so-called drone swarm or AUAS swarm, without having a base station of communication but communicating with each other using multiple spatio-temporal data. The theories of structured matrices, concepts in multi-beam beamforming, and sensor arrays are utilized to propose a swarm routing algorithm. We address the routing algorithm’s computational and arithmetic complexities, precision, and reliability. We measure bit-error-rate (BER) based on the number of elements in sensor arrays and beamformed output of the members of the swarm to authenticate and secure the routing for the decentralized AUAS networking. The proposed model has the potential to enable future drone swarm applications and services. Finally, we discuss future work on obtaining a machine-learning-based low-cost drone swarm routing algorithm. 
    more » « less
  4. This paper describes RF-based detection of un-manned aerial systems (UAS) without using transmit signals. The proposed scheme uses a sensitive magnetometer and digital signal processing algorithm to enable robust detection of high-torque/weig h t ratio rare earth magnet-based electric motors that are the enabling technology in electrical UAS. Preliminary experimental results with a 1 m^2 receive coil show reliable detection of a small UAS at distances of several meters. 
    more » « less
  5. null (Ed.)