Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The environments where galaxies reside crucially shape their star formation histories. We investigate a large sample of 1626 cluster galaxies located within 105 galaxy clusters spanning a large range in redshift (0.26 <z< 1.13). The galaxy clusters are massive (M500≳ 2 × 1014M⊙) and uniformly selected from the SPT and ACT Sunyaev–Zel’dovich surveys. With spectra in hand for thousands of cluster members, we use the galaxies’ position in projected phase space as a proxy for their infall times, which provides a more robust measurement of environment than quantities such as projected clustercentric radius. We find clear evidence for a gradual age increase of the galaxy’s mean stellar populations (∼0.71 ± 0.4 Gyr based on a 4000 Å break, Dn4000) with the time spent in the cluster environment. This environmental quenching effect is found regardless of galaxy luminosity (faint or bright) and redshift (low or high-z), although the exact stellar age of galaxies depends on both parameters at fixed environmental effects. Such a systematic increase of Dn4000 with infall proxy would suggest that galaxies that were accreted into hosts earlier were quenched earlier due to longer exposure to environmental effects such as ram pressure stripping and starvation. Compared to the typical dynamical timescales of 1–3 Gyr of cluster galaxies, the relatively small age increase (∼0.71 ± 0.4 Gyr) found in our sample galaxies seems to suggest that a slow environmental process such as starvation is the dominant quenching pathway. Our results provide new insights into environmental quenching effects spanning a large range in cosmic time (∼5.2 Gyr,z= 0.26–1.13) and demonstrate the power of using a kinematically derived infall time proxy.more » « less
-
In this work, we present a constraint on the abundance of supergiant (SG) stars at redshiftz ≈ 1, based on recent observations of a strongly lensed arc at this redshift. First we derived a free-form model of MACS J0416.1-2403 using data from the Beyond Ultra-deep Frontier Fields and Legacy Observations (BUFFALO) program. The new lens model is based on 72 multiply lensed galaxies that produce 214 multiple images, making it the largest sample of spectroscopically confirmed lensed galaxies on this cluster. The larger coverage in BUFFALO allowed us to measure the shear up to the outskirts of the cluster, and extend the range of lensing constraints up to ∼1 Mpc from the central region, providing a mass estimate up to this radius. As an application, we make predictions for the number of high-redshift multiply lensed galaxies detected in future observations with theJames WebbSpace Telescope (JWST). Then we focus on a previously known lensed galaxy atz = 1.0054, nicknamed Spock, which contains four previously reported transients. We interpret these transients as microcaustic crossings of SG stars and explain how we computed the probability of such events. Based on simplifications regarding the stellar evolution, we find that microlensing (by stars in the intracluster medium) of SG stars atz = 1.0054 can fully explain these events. The inferred abundance of SG stars is consistent with either (1) a number density of stars with bolometric luminosities beyond the Humphreys-Davidson (HD) limit (Lmax ≈ 6 × 105 L⊙for red stars), which is below ∼400 stars kpc−2, or (2) the absence of stars beyond the HD limit but with a SG number density of ∼9000 kpc−2for stars with luminosities between 105 L⊙and 6 × 105 L⊙. This is equivalent to one SG star per 10 × 10 pc2. Finally, we make predictions for future observations with JWST’s NIRcam. We find that in observations made with theF200Wfilter that reach 29 mag AB, if cool red SG stars exist atz ≈ 1 beyond the HD limit, they should be easily detected in this arc.more » « less
-
Abstract We present the first spatially resolved maps of gas-phase metallicity for two dust-obscured star-forming galaxies atz∼ 4, from the JWST TEMPLATES Early Release Science program, derived from NIRSpec integral field unit spectroscopy of the Hαand [Nii] emission lines. Empirical optical line calibrations are used to determine that the sources are globally enriched to near-solar levels. While one source shows elevated [N ii]/Hαratios and broad Hαemission consistent with the presence of an active galactic nucleus in a ≳1 kpc region, we argue that both systems have already undergone significant metal enrichment as a result of their extremely high star formation rates. Utilizing Atacama Large Millimeter/submillimeter Array rest-frame 380μm continuum and [Ci](3P2–3P1) line maps we compare the spatial variation of the metallicity and gas-to-dust ratio in the two galaxies, finding the two properties to be anticorrelated on highly resolved spatial scales, consistent with various literature studies ofz∼ 0 galaxies. The data are indicative of the enormous potential of JWST to probe the enrichment of the interstellar medium on ∼kpc scales in extremely dust-obscured systems atz∼ 4 and beyond.more » « less
-
Abstract We present JWST and Atacama Large Millimeter/submillimeter Array (ALMA) imaging for the lensing system SPT0418−47, which includes a strongly lensed, dusty, star-forming galaxy at redshiftz= 4.225 and an associated multiply imaged companion. The JWST NIRCam and MIRI imaging observations presented in this paper were acquired as part of the Early Release Science program Targeting Extremely Magnified Panchromatic Lensed Arcs and Their Extended Star formation (TEMPLATES). This data set provides robust mutiwavelength detections of stellar light in both the main (SPT0418A) and companion (SPT0418B) galaxies, while the ALMA detection of [Cii] emission confirms that SPT0418B lies at the same redshift as SPT0418A. We infer that the projected physical separation of the two galaxies is 4.42 ± 0.05 kpc. We derive total magnifications ofμ= 29 ± 1 andμ= 4.1 ± 0.7 for SPT0418A and SPT0418B, respectively. We use bothprospectorandcigaleto derive stellar masses. We find that SPT0418A has a stellar mass of fromprospector orM*= 1.5 ± 0.3 × 1010M⊙fromcigale. The stellar mass ratio of SPT0418A and SPT0418B is roughly between 4 and 7 ( forprospectorand 7.5 ± 3.7 forcigale). We see evidence of extended structure associated with SPT0418A that is suggestive of a tidal feature. These features, along with the close projected proximity, imply that the system is interacting. Interestingly, the star formation rates and stellar masses of both galaxies are consistent with the main sequence of star-forming galaxies at this epoch, indicating that this ongoing interaction has not noticeably elevated the star formation levels.more » « less
-
Abstract Using stellar population synthesis models to infer star formation histories (SFHs), we analyze photometry and spectroscopy of a large sample of quiescent galaxies that are members of Sunyaev–Zel’dovich (SZ)-selected galaxy clusters across a wide range of redshifts. We calculate stellar masses and mass-weighted ages for 837 quiescent cluster members at 0.3 < z < 1.4 using rest-frame optical spectra and the Python-based Prospector framework, from 61 clusters in the SPT-GMOS Spectroscopic Survey (0.3 < z < 0.9) and three clusters in the SPT Hi-z cluster sample (1.25 < z < 1.4). We analyze spectra of subpopulations divided into bins of redshift, stellar mass, cluster mass, and velocity-radius phase-space location, as well as by creating composite spectra of quiescent member galaxies. We find that quiescent galaxies in our data set sample a diversity of SFHs, with a median formation redshift (corresponding to the lookback time from the redshift of observation to when a galaxy forms 50% of its mass, t 50 ) of z = 2.8 ± 0.5, which is similar to or marginally higher than that of massive quiescent field and cluster galaxy studies. We also report median age–stellar mass relations for the full sample (age of the universe at t 50 (Gyr) = 2.52 (±0.04)–1.66 (±0.12) log 10 ( M /10 11 M ⊙ )) and recover downsizing trends across stellar mass; we find that massive galaxies in our cluster sample form on aggregate ∼0.75 Gyr earlier than lower-mass galaxies. We also find marginally steeper age–mass relations at high redshifts, and report a bigger difference in formation redshifts across stellar mass for fixed environment, relative to formation redshifts across environment for fixed stellar mass.more » « less
-
Abstract We present the discovery of the most distant, dynamically relaxed cool core cluster, SPT-CL J2215−3537 (SPT2215), and its central brightest cluster galaxy (BCG) atz= 1.16. Using new X-ray observations, we demonstrate that SPT2215 harbors a strong cool core with a central cooling time of 200 Myr (at 10 kpc) and a maximal intracluster medium cooling rate of 1900 ± 400M⊙yr−1. This prodigious cooling may be responsible for fueling the extended, star-forming filaments observed in Hubble Space Telescope imaging. Based on new spectrophotometric data, we detect bright [Oii] emission in the BCG, implying an unobscured star formation rate (SFR) of M⊙yr−1. The detection of a weak radio source (2.0 ± 0.8 mJy at 0.8 GHz) suggests ongoing feedback from an active galactic nucleus (AGN), though the implied jet power is less than half the cooling luminosity of the hot gas, consistent with cooling overpowering heating. The extreme cooling and SFR of SPT2215 are rare among known cool core clusters, and it is even more remarkable that we observe these at such high redshift, when most clusters are still dynamically disturbed. The high mass of this cluster, coupled with the fact that it is dynamically relaxed with a highly isolated BCG, suggests that it is an exceptionally rare system that must have formed very rapidly in the early universe. Combined with the high SFR, SPT2215 may be a high-zanalog of the Phoenix cluster, potentially providing insight into the limits of AGN feedback and star formation in the most massive galaxies.more » « less
-
ABSTRACT The Reionization Cluster Survey imaged 41 galaxy clusters with the Hubble Space Telescope (HST), in order to detect lensed and high-redshift galaxies. Each cluster was imaged to about 26.5 AB mag in three optical and four near-infrared bands, taken in two distinct visits separated by varying time intervals. We make use of the multiple near-infrared epochs to search for transient sources in the cluster fields, with the primary motivation of building statistics for bright caustic crossing events in gravitational arcs. Over the whole sample, we do not find any significant (≳5σ) caustic crossing events, in line with expectations from semi-analytical calculations but in contrast to what may be naively expected from previous detections of some bright events or from deeper transient surveys that do find high rates of such events. Nevertheless, we find six prominent supernova (SN) candidates over the 41 fields: three of them were previously reported and three are new ones reported here for the first time. Out of the six candidates, four are likely core-collapse SNe – three in cluster galaxies, and among which only one was known before, and one slightly behind the cluster at z ∼ 0.6–0.7. The other two are likely Ia – both of them previously known, one probably in a cluster galaxy and one behind it at z ≃ 2. Our study supplies empirical bounds for the rate of caustic crossing events in galaxy cluster fields to typical HST magnitudes, and lays the groundwork for a future SN rate study.more » « less