skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mai, Siwei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Identifying spatiotemporal differences in brain functional dynamics corresponding to two tasks is critical for understanding how specific neural processes contribute to distinct tasks or cognitive functions. Traditional methods rely on imposing assumptions and limits on the location and timing of activities, while machine-learning-based methods generally lack offering interpretable insights. This highlights the need for new data-driven approaches to capture spatial and temporal differences in brain activity between two tasks, while also providing interpretable explanations of the neural processes underlying these differences. In this work, we formulate the problem of finding the spatial and temporal differences in the dynamics of brain function corresponding to two motor imagery (MI) tasks (left hand movement vs right hand movement) as a discriminative discrete basis problem (DDBP). We apply the data-driven asymmetric discriminative associative algorithm (ADASSO) to EEG data collected during these tasks to uncover the key functional components of the brain’s functional dynamics that differentiate between them. Results suggest that hand movements are strongly associated with high confidence activation in the motor cortex, verifying the effectiveness of the ADASSO algorithm in identifying the location and timing of cortical activities that distinguish between the two task classes. 
    more » « less
    Free, publicly-accessible full text available April 14, 2026