skip to main content

Search for: All records

Creators/Authors contains: "Maji, Hemanta"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 1, 2023
  2. Free, publicly-accessible full text available June 26, 2023
  3. Abstract While the practicality of secure multi-party computation (MPC) has been extensively analyzed and improved over the past decade, we are hitting the limits of efficiency with the traditional approaches of representing the computed functionalities as generic arithmetic or Boolean circuits. This work follows the design principle of identifying and constructing fast and provably-secure MPC protocols to evaluate useful high-level algebraic abstractions; thus, improving the efficiency of all applications relying on them. We present Polymath, a constant-round secure computation protocol suite for the secure evaluation of (multi-variate) polynomials of scalars and matrices, functionalities essential to numerous data-processing applications. Using precise natural precomputation and high-degree of parallelism prevalent in the modern computing environments, Polymath can make latency of secure polynomial evaluations of scalars and matrices independent of polynomial degree and matrix dimensions. We implement our protocols over the HoneyBadgerMPC library and apply it to two prominent secure computation tasks: privacy-preserving evaluation of decision trees and privacy-preserving evaluation of Markov processes. For the decision tree evaluation problem, we demonstrate the feasibility of evaluating high-depth decision tree models in a general n -party setting. For the Markov process application, we demonstrate that Poly-math can compute large powers of transition matrices with better onlinemore »time and less communication.« less
  4. Ben-Or and Linial, in a seminal work, introduced the full information model to study collective coin-tossing protocols. Collective coin-tossing is an elegant functionality providing uncluttered access to the primary bottlenecks to achieve security in a specific adversarial model. Additionally, the research outcomes for this versatile functionality has direct consequences on diverse topics in mathematics and computer science. This survey summarizes the current state-of-the-art of coin-tossing protocols in the full information model and recent advances in this field. In particular, it elaborates on a new proof technique that identifies the minimum insecurity incurred by any coin-tossing protocol and, simultaneously, constructs the coin-tossing protocol achieving that insecurity bound. The combinatorial perspective into this new proof-technique yields new coin-tossing protocols that are more secure than well-known existing coin-tossing protocols, leading to new isoperimetric inequalities over product spaces. Furthermore, this proof-technique’s algebraic reimagination resolves several long-standing fundamental hardness-of-computation problems in cryptography. This survey presents one representative application of each of these two perspectives.