Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Kagomé metals are widely recognized, versatile platforms for exploring topological properties, unconventional electronic correlations, magnetic frustration, and superconductivity. In the
R V6Sn6family of materials (R = Sc, Y, Lu), ScV6Sn6hosts an unusual charge density wave ground state as well as structural similarities with theA V3Sb5system (A = K, Cs, Rb). In this work, we combine Raman scattering spectroscopy with first-principles lattice dynamics calculations to reveal phonon mixing processes in the charge density wave state of ScV6Sn6. In the low temperature phase, we find at least four new peaks in the vicinity of the V-containing totally symmetric mode near 240 cm−1suggesting that the density wave acts to mix modes ofP 6/m m m and symmetry - a result that we quantify by projecting phonons of the high symmetry state onto those of the lower symmetry structure. We also test the stability of the short-range ordered density wave state under compression and propose that both physical and chemical pressure quench the effect. We discuss these findings in terms of symmetry and the structure-property trends that can be unraveled in this system.$$R\bar{3}m$$ Free, publicly-accessible full text available December 1, 2024 -
One-dimensional (1D) van der Waals materials have emerged as an intriguing playground to explore novel electronic and optical effects. We report on inorganic one-dimensional SbPS4 nanotube bundles obtained via mechanical exfoliation from bulk crystals. The ability to mechanically exfoliate SbPS4 nanobundles offers the possibility of applying modern 2D material fabrication techniques to create mixed-dimensional van der Waals heterostructures. We find that SbPS4 can readily be exfoliated to yield long (>10 μm) nanobundles with thicknesses that range from 1.3 to 200 nm. We investigated the optical response of semiconducting SbPS4 nanobundles and discovered that upon excitation with blue light, they emit bright and ultra-broadband red light with a quantum yield similar to that of hBN-encapsulated MoSe2. We discovered that the ultra-broadband red light emission is a result of a large ∼1 eV exciton binding energy and a ∼200 meV exciton self-trapping energy, unprecedented in previous material studies. Due to the bright and ultra-broadband light emission, we believe that this class of inorganic 1D van der Waals semiconductors has numerous potential applications, including on-chip tunable nanolasers, and applications that require ultraviolet to visible light conversion, such as lighting and sensing. Overall, our findings open avenues for harnessing the unique characteristics of these nanomaterials, advancing both fundamental research and practical optoelectronic applications.<more » « lessFree, publicly-accessible full text available January 18, 2025
-
Abstract Metals with kagome lattice provide bulk materials to host both the flat-band and Dirac electronic dispersions. A new family of kagome metals is recently discovered in
A V6Sn6. The Dirac electronic structures of this material needs more experimental evidence to confirm. In the manuscript, we investigate this problem by resolving the quantum oscillations in both electrical transport and magnetization in ScV6Sn6. The revealed orbits are consistent with the electronic band structure models. Furthermore, the Berry phase of a dominating orbit is revealed to be aroundπ , providing direct evidence for the topological band structure, which is consistent with calculations. Our results demonstrate a rich physics and shed light on the correlated topological ground state of this kagome metal. -
Abstract Spectrally narrow optical resonances can be used to generate slow light, i.e., a large reduction in the group velocity. In a previous work, we developed hybrid 2D semiconductor plasmonic structures, which consist of propagating optical frequency surface-plasmon polaritons interacting with excitons in a semiconductor monolayer. Here, we use coupled exciton-surface plasmon polaritons (E-SPPs) in monolayer WSe 2 to demonstrate slow light with a 1300 fold decrease of the SPP group velocity. Specifically, we use a high resolution two-color laser technique where the nonlinear E-SPP response gives rise to ultra-narrow coherent population oscillation (CPO) resonances, resulting in a group velocity on order of 10 5 m/s. Our work paves the way toward on-chip actively switched delay lines and optical buffers that utilize 2D semiconductors as active elements.more » « less