- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0002100000000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Manolis Zampetakis (3)
-
Constantinos Daskalakis (2)
-
Noah Golowich (2)
-
Stratis Skoulakis (2)
-
Guy Kornowski (1)
-
Michael I. Jordan (1)
-
Ohad Shamir (1)
-
Tianyi Lin (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Constantinos Daskalakis; Noah Golowich; Stratis Skoulakis; Manolis Zampetakis (, Proceedings of the 36th Annual Conference on Learning Theory (COLT))
-
Michael I. Jordan; Guy Kornowski; Tianyi Lin; Ohad Shamir; Manolis Zampetakis (, Conference on Learning Theory)We study the complexity of optimizing nonsmooth nonconvex Lipschitz functions by producing (δ, ǫ)-Goldstein stationary points. Several recent works have presented randomized algorithms that produce such points using eO(δ−1ǫ−3) first-order oracle calls, independent of the dimension d. It has been an open problem as to whether a similar result can be obtained via a deterministic algorithm. We resolve this open problem, showing that randomization is necessary to obtain a dimension-free rate. In particular, we prove a lower bound of (d) for any deterministic algorithm. Moreover, we show that unlike smooth or convex optimization, access to function values is required for any deterministic algorithm to halt within any finite time horizon. On the other hand, we prove that if the function is even slightly smooth, then the dimension-free rate of eO(δ−1ǫ−3) can be obtained by a deterministic algorithm with merely a logarithmic dependence on the smoothness parameter. Motivated by these findings, we turn to study the complexity of deterministically smoothing Lipschitz functions. Though there are well-known efficient black-box randomized smoothings, we start by showing that no such deterministic procedure can smooth functions in a meaningful manner (suitably defined), resolving an open question in the literature. We then bypass this impossibility result for the structured case of ReLU neural networks. To that end, in a practical “white-box” setting in which the optimizer is granted access to the network’s architecture, we propose a simple, dimension-free, deterministic smoothing of ReLU networks that provably preserves (δ, ǫ)-Goldstein stationary points. Our method applies to a variety of architectures of arbitrary depth, including ResNets and ConvNets. Combined with our algorithm for slightly-smooth functions, this yields the first deterministic, dimension-free algorithm for optimizing ReLU networks, circumventing our lower bound.more » « less
An official website of the United States government

Full Text Available