skip to main content


Search for: All records

Creators/Authors contains: "Mansour, Yishay"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this work we revisit an interactive variant of joint differential privacy, recently introduced by Naor et al. [2023], and generalize it towards handling online processes in which existing privacy definitions seem too restrictive. We study basic properties of this definition and demonstrate that it satisfies (suitable variants) of group privacy, composition, and post processing. In order to demonstrate the advantages of this privacy definition compared to traditional forms of differential privacy, we consider the basic setting of online classification. We show that any (possibly non-private) learning rule can be effectively transformed to a private learning rule with only a polynomial overhead in the mistake bound. This demonstrates a stark difference with traditional forms of differential privacy, such as the one studied by Golowich and Livni [2021], where only a double exponential overhead in the mistake bound is known (via an information theoretic upper bound). 
    more » « less
  2. In this work, we propose a multi-objective decision making framework that accommodates different user preferences over objectives, where preferences are learned via policy comparisons. Our model consists of a known Markov decision process with a vector-valued reward function, with each user having an unknown preference vector that expresses the relative importance of each objective. The goal is to efficiently compute a near-optimal policy for a given user. We consider two user feedback models. We first address the case where a user is provided with two policies and returns their preferred policy as feedback. We then move to a different user feedback model, where a user is instead provided with two small weighted sets of representative trajectories and selects the preferred one. In both cases, we suggest an algorithm that finds a nearly optimal policy for the user using a number of comparison queries that scales quasilinearly in the number of objectives. 
    more » « less
  3. Abstract Efficient and truthful mechanisms to price resources on servers/machines have been the subject of much work in recent years due to the importance of the cloud market. This paper considers revenue maximization in the online stochastic setting with non-preemptive jobs and a unit capacity server. One agent/job arrives at every time step, with parameters drawn from the underlying distribution. We design a posted-price mechanism which can be efficiently computed and is revenue-optimal in expectation and in retrospect, up to additive error. The prices are posted prior to learning the agent’s type, and the computed pricing scheme is deterministic, depending only on the length of the allotted time interval and on the earliest time the server is available. We also prove that the proposed pricing strategy is robust to imprecise knowledge of the job distribution and that a distribution learned from polynomially many samples is sufficient to obtain a near-optimal truthful pricing strategy. 
    more » « less
  4. null (Ed.)

    Efficient and truthful mechanisms to price time on remote servers/machines have been the subject of much work in recent years due to the importance of the cloud market. This paper considers online revenue maximization for a unit capacity server, when jobs are non preemptive, in the Bayesian setting: at each time step, one job arrives, with parameters drawn from an underlying distribution.We design an efficiently computable truthful posted price mechanism, which maximizes revenue in expectation and in retrospect, up to additive error. The prices are posted prior to learning the agent's type, and the computed pricing scheme is deterministic.We also show the pricing mechanism is robust to learning the job distribution from samples, where polynomially many samples suffice to obtain near optimal prices.

     
    more » « less
  5. In this work we propose a model where the value of a buyer for some product (like a slice of pizza) is a combination of their personal desire for the product (how hungry they are for pizza) and the quality of the product (how good the pizza is). Sellers in this setting have a two-dimensional optimization problem of determining both the quality level at which to make their product (how expensive ingredients to use) and the price at which to sell it. We analyze optimal seller strategies as well as analogs of Walrasian equilibria in this setting. A key question we are interested in is: to what extent will the price of a good be a reliable indicator of the good’s quality? One result we show is that indeed in this model, price will be a surprisingly robust signal for quality under optimal seller behavior. In particular, while the specific quality and price that a seller should choose will depend highly on the specific distribution of buyers, for optimal sellers, price and quality will be linearly related, independent of that distribution. We also show that for the case of multiple buyers and sellers, an analog of Walrasian equilibrium exists in this setting, and can be found via a natural tatonnement process. Finally, we analyze markets with a combination of “locals” (who know the quality of each good) and “tourists” (who do not) and analyze under what conditions the market will become a tourist trap, setting quality to zero while keeping prices high. 
    more » « less
  6. We develop the first polynomial-time algorithm for co-training of homogeneous linear separators under \em weak dependence, a relaxation of the condition of independence given the label. Our algorithm learns from purely unlabeled data, except for a single labeled example to break symmetry of the two classes, and works for any data distribution having an inverse-polynomial margin and with center of mass at the origin. 
    more » « less
  7. In recent years crowdsourcing has become the method of choice for gathering labeled training data for learning algorithms. Standard approaches to crowdsourcing view the process of acquiring labeled data separately from the process of learning a classifier from the gathered data. This can give rise to computational and statistical challenges. For example, in most cases there are no known computationally efficient learning algorithms that are robust to the high level of noise that exists in crowdsourced data, and efforts to eliminate noise through voting often require a large number of queries per example. In this paper, we show how by interleaving the process of labeling and learning, we can attain computational efficiency with much less overhead in the labeling cost. In particular, we consider the realizable setting where there exists a true target function in F and consider a pool of labelers. When a noticeable fraction of the labelers are perfect, and the rest behave arbitrarily, we show that any F that can be efficiently learned in the traditional realizable PAC model can be learned in a computationally efficient manner by querying the crowd, despite high amounts of noise in the responses. Moreover, we show that this can be done while each labeler only labels a constant number of examples and the number of labels requested per example, on average, is a constant. When no perfect labelers exist, a related task is to find a set of the labelers which are good but not perfect. We show that we can identify all good labelers, when at least the majority of labelers are good. 
    more » « less