skip to main content


Search for: All records

Creators/Authors contains: "Margherio, Cara"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Teaching engineering students how to work in teams is necessary, important, and hard to do well. Minoritized students experience forms of marginalization from their teammates routinely, which affects their access to safe learning environments. Team evaluation tools like CATME can help instructors see where teaming problems are, but are often normed in ways that obscure the subtle if pervasive harassment of minoritized teammates. Instructors, particularly of large courses, need better ways to identify teams that are marginalizing minoritized team members. This paper introduces theory on microaggressions, selective incivility theory, and coded language to interpret data collected from a complex study site during the COVID-19 pandemic. The team collected data from classroom observations (moved virtual during COVID), interviews with instructors, interviews with students, interpretations of historical data collected through an online team evaluation tool called CATME, and a diary study where students documented their reflections on their marginalization by teammates. While data collection and analysis did not, of course, go as the research team had planned, it yielded insights into how frequently minoritized teammates experience marginalization, instructors’ sense of their responsibility and skill for addressing such, marginalization, and students’ sense of defeat in hoping for more equitable and supportive learning environments. The paper describes our data collection processes, analysis, and some choice insights drawn from this multi-year study at a large, research-extensive white university. 
    more » « less
    Free, publicly-accessible full text available June 28, 2025
  2. This paper offers a reflexive analysis of an interdisciplinary and cross-race collaboration to advance equity in engineering called LATTICE (Launching Academics on the Tenure-Track: an Intentional Community in Engineering). We engage two bodies of scholarship—matters of care in feminist science and technology studies (STS) and critical race theory on counterspaces—to theorize on the data infrastructure and narrative practices that we developed when applying critical methodologies to collective action in technoscience. We discuss how our care practices conflicted with traditional ethnographic practices and thus, inspired us to innovate on methods. These methods—member-checking and polyvocal memo-ing—make transgressing the boundaries of LATTICE counterspaces for public dissemination possible by invoking caring as praxis. We conclude that using these methods to discuss the contradictions and challenges in STS collaborations is an opportunity for advancing mutual intelligibility among interdisciplinary scholars and a politics of knowledge production grounded in values of care and friendship that may contribute to equity and justice in technoscience.

     
    more » « less
    Free, publicly-accessible full text available April 28, 2025
  3. Teaming is increasingly important to teach well in undergraduate engineering education. Teams composed of both majority and minoritized students have an increased risk of majority members harassing minoritized members. Instructors of large classes have a difficult time identifying in which teams such harassment is taking place, and knowing what to do to interrupt it. This paper, part of a bigger project grounded in microaggression theory and selective incivility theory, specifically considers what instructors currently do, and indeed whether it is their job to address teammate harassment. We undertook a rough thematic analysis of interviews with instructors of a large first-year engineering course at a large American research-extensive majority-white university in the Midwest. We found instructors adopted an individual-centric model of teaming, intervened mainly in severe instances, and their interventions tended to be subtle. We offer an early version of an alternative model to structure forthcoming training sessions with instructors, graduate teaching assistants, and peer teachers. 
    more » « less
  4. null (Ed.)
    Our work with teams funded through the National Science Foundation REvolutionizing Engineering and Computer Science Departments (RED) program began in 2015. Our project—funded first by a NSF EAGER grant, and then by a NSF RFE grant—focuses on understanding how the RED teams make change on their campuses and how this information about change can be captured and communicated to other STEM programs that seek to make change happen. Because our RED Participatory Action Research (REDPAR) Project is a collaboration between researchers (Center for Evaluation & Research for STEM Equity at the University of Washington) and practitioners (Making Academic Change Happen Workshop at Rose-Hulman Institute of Technology), we have challenged ourselves to develop means of communication that allow for both aspects of the work—both research and practice—to be treated equitably. As a result, we have created a new dissemination channel—the RED Participatory Action Project Tipsheet. The tipsheet format accomplishes several important goals. First, the content is drawn from both the research conducted with the RED teams and the practitioners’ work with the teams. Each tipsheet takes up a single theme and grounds the theme in the research literature while offering practical tips for applying the information. Second, the format is accessible to a wide spectrum of potential users, remaining free of jargon and applicable to multiple program and departmental contexts. Third, by publishing the tipsheets ourselves, rather than submitting them to an engineering education research journal, we make the information timely and freely available. We can make a tipsheet as soon as a theme emerges from the intersection of research data and observations of practice. During the poster session at ASEE 2019, we will share the three REDPAR Tipsheets that have been produced thus far: Creating Strategic Partnerships, Communicating Change, and Shared Vision. We will also work with attendees to demonstrate how the tipsheet content is adaptable to the attendees’ specific academic context. Our goal for the poster session is to provide attendees with tipsheet resources that are useful to their specific change project. 
    more » « less
  5. null (Ed.)
    At the start of their work for the National Science Foundation’s Revolutionizing Engineering Departments (RED) Program (IUSE/Professional Formation of Engineers, NSF 19-614), RED teams face a variety of challenges. Not only must they craft a shared vision for their projects and create strategic partnerships across their campuses to move the project forward, they must also form a new team and communicate effectively within the team. Our work with RED teams over the past 5 years has highlighted the common challenges these teams face at the start, and for that reason, we have developed the RED Start Up Session, a ½ day workshop that establishes best practices for RED teams’ work and allows for early successes in these five year projects. As the RED Participatory Action Research team (REDPAR)--comprised of individuals from Rose-Hulman Institute of Technology and the University of Washington--we have taken the research data collected as we work with RED teams and translated it into practical strategies that can benefit RED teams as they embark on their projects. This presentation will focus on the content and organization of the Start Up Session and how these lessons learned can contribute to the furthering of the goals of the RED program: to design “revolutionary new approaches to engineering education,” focusing on “organizational and cultural change within the departments, involving students, faculty, staff, and industry in rethinking what it means to provide an engineering program.” We see the Start Up Session as an important first step in the RED team establishing an identity as a team and learning how to work effectively together. We also encourage new RED teams to learn from the past, through a panel discussion with current RED team members who fill various roles on the teams: engineering education researcher, project manager, project PI, disciplinary faculty, social scientist, and others. By presenting our findings from the Start Up Session at ASEE, we believe we can contribute to the national conversation regarding change in engineering education as it is evidenced in the RED team’s work. 
    more » « less
  6. Shared vision is an important process for change projects, serving to amplify success, increase participation, and erode the divide between project leaders and constituents. Yet there are few empirical examinations of the process of building shared vision within academic departments. Using focus groups and participant observation, this study examines shared vision development within 13 large-scale change projects in engineering and computer science higher education. We find that teams of faculty, staff, administrators, and students built shared vision with stakeholders through co-orientation, formational communication, and recognition of stakeholder autonomy. Our results delineate practices for developing shared vision for academic change projects and demonstrate the benefits of inclusive stakeholder empowerment. 
    more » « less
  7. null (Ed.)
    his panel paper presents research on connecting theory to practice and the lessons learned in a change project, with a focus on team formation during the early stages of change making. An important yet often overlooked step in any change project is pulling together individuals to form a competent and efficient team. A functional change-making team requires a variety of complementary skill sets, which may come from different disciplinary backgrounds and/or different prior experiences. Kotter (1996) uses the term “guiding coalition” to refer to an effective change-making team. He identifies four key characteristics of guiding coalitions: position power, expertise, credibility, leadership. Kotter also goes on to examine the importance of trust and a common goal. In a review of the literature on guiding coalitions, Have, Have, Huijsmans, and Otto (2017) found that though the concept of a guiding coalition is widely advocated in the literature, only one study showed a moderate correlation between the existence of a guiding coalition and the success of a change process (Abraham, Griffin, & Crawford, 1999). Have et al. (2017) conclude that while the literature provides little evidence to the value of a guiding coalition, it does provide evidence that Kotter’s characteristics of a guiding coalition (position power, expertise, credibility, leadership skills, trust in leadership, and setting common goals) individually have positive effects on the outcomes of a change project. However, we don’t know how these characteristics interact. This analysis of team building and complementary skill sets emerges from our participatory action research with the NSF REvolutionizing engineering and computer science Departments (RED) teams to investigate the change process within STEM higher education. The research-to-practice cycle is integral to our project; data gathered through working with the RED teams provides insights that are then translated into applied, hands-on practices. We utilize an abductive analysis approach, a qualitative methodology that moves recursively between the data and theory-building to remain open to new or contradictory findings, keeping existing theory in mind while not developing formal hypotheses (Timmermans & Tavory, 2012). We find that many of the teams have learned lessons in the early stages of the change process around the guiding coalition characteristics, and our analysis builds on the literature by examining how these characteristics interact. For example, the expertise of the social scientists and education researchers help discern which change strategies have supporting evidence and fit the context, in addition to what is reasonable for planning, implementation, and evaluation. The results presented in this paper connect theory to practice, clarifying practices for building effective change-making teams within higher education. 
    more » « less
  8. null (Ed.)
    This Research to Practice Work in Progress paper addresses the importance of creating shared vision for change in STEM education. While many educational reform initiatives accomplish their goals in the short-term, only systemic change can truly improve quality and inclusion in engineering and computing education. Developing shared vision is an often repeated recommendation for effective and sustainable change from organizational consultants and scholars of higher education). In our work, we have found that embracing stakeholders as full partners through sharing vision is a proactive way to expose concerns and incorporate a variety of viewpoints into the change process. Shared vision is a useful concept that can be made more accessible and actionable through social scientific research on how change-making teams engage and empower stakeholders to collaborate on their projects. 
    more » « less