Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Topological data analysis (TDA) methods can be useful for classification and clustering tasks in many different fields as they can provide two dimensional persistence diagrams that summarize important information about the shape of potentially complex and high dimensional data sets. The space of persistence diagrams can be endowed with various metrics, which admit a statistical structure and allow to use these summaries for machine learning algorithms, e.g. the Wasserstein distance. However, computing the distance between two persistence diagrams involves finding an optimal way to match the points of the two diagrams and may not always be an easy task for classical computers. Recently, quantum algorithms have shown the potential to speedup the process of obtaining the persistence information displayed on persistence diagrams by estimating the spectra of persistent Dirac operators. So, in this work we explore the potential of quantum computers to estimate the distance between persistence diagrams as the next step in the design of a fully quantum framework for TDA. In particular we propose variational quantum algorithms for the Wasserstein distance as well as the distance. Our implementation is a weighted version of the quantum approximate optimization Algorithm that relies on control clauses to encode the constraints of the optimization problem.more » « less
-
Free, publicly-accessible full text available July 21, 2025
-
Free, publicly-accessible full text available July 21, 2025
-
Free, publicly-accessible full text available June 24, 2025
-
Free, publicly-accessible full text available July 1, 2025
-
This primer helps the reader understand the basic categories of molecular representations and provides computational tools to generate molecular descriptors in each of these categories. After reading this primer, you will be able to use various methods to generate machine and/or human interpretable representations of molecular systems for inputs to machine learning models or for general chemical data science applications.more » « less