skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Marscher, Alan P"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. X-ray polarimetry has been suggested as a prominent tool for investigating the geometrical and physical properties of the emissions from active galactic nuclei (AGN). The successful launch of the Imaging X-ray Polarimetry Explorer (IXPE) on 9 December 2021 has expanded the previously restricted scope of polarimetry into the X-ray domain, enabling X-ray polarimetric studies of AGN. Over a span of two years, IXPE has observed various AGN populations, including blazars and radio-quiet AGN. In this paper, we summarize the remarkable discoveries achieved thanks to the opening of the new window of X-ray polarimetry of AGN through IXPE observations. We will delve into two primary areas of interest: first, the magnetic field geometry and particle acceleration mechanisms in the jets of radio-loud AGN, such as blazars, where the relativistic acceleration process dominates the spectral energy distribution; and second, the geometry of the hot corona in radio-quiet AGN. Thus far, the IXPE results from blazars favor the energy-stratified shock acceleration model, and they provide evidence of helical magnetic fields inside the jet. Concerning the corona geometry, the IXPE results are consistent with a disk-originated slab-like or wedge-like shape, as could result from Comptonization around the accretion disk. 
    more » « less
    Free, publicly-accessible full text available June 1, 2025
  2. Blazars whose synchrotron spectral energy distribution (SED) peaks at X-ray energies need to accelerate electrons to energies in the >100 GeV range in relativistic plasma jets at distances of parsecs from the central engine. Compton scattering by the same electrons can explain high luminosities at very high photon energies (>100 GeV) from the same objects. Turbulence combined with a standing conical shock can accomplish this. Such a scenario can also qualitatively explain the level and variability of linear polarization observed at optical frequencies in these objects. Multi-wavelength polarization measurements, including those at X-ray energies by the Imaging X-ray Polarimetry Explorer (IXPE), find that the degree of polarization is several times higher at X-ray than at optical wavelengths, in general agreement with the turbulence-plus-shock picture. Some detailed properties of the observed polarization can be naturally explained by this scenario, while others pose challenges that may require modifications to the model. 
    more » « less
  3. Abstract Blazar emission is dominated by nonthermal radiation processes that are highly variable across the entire electromagnetic spectrum. Turbulence, which can be a major source of nonthermal particle acceleration, can widely exist in the blazar emission region. The Turbulent Extreme Multi-Zone (TEMZ) model has been used to describe turbulent radiation signatures. Recent particle-in-cell (PIC) simulations have also revealed the stochastic nature of the turbulent emission region and particle acceleration therein. However, radiation signatures have not been systematically studied via first-principles-integrated simulations. In this paper, we perform combined PIC and polarized radiative transfer simulations to study synchrotron emission from magnetic turbulence in the blazar emission region. We find that the multiwavelength flux and polarization are generally characterized by stochastic patterns. Specifically, the variability timescale and average polarization degree (PD) are governed by the correlation length of the turbulence. Interestingly, magnetic turbulence can result in polarization angle swings with arbitrary amplitudes and duration, in either direction, that are not associated with changes in flux or PD. Surprisingly, these swings, which are stochastic in nature, can appear either bumpy or smooth, although large-amplitude swings (>180°) are very rare, as expected. Our radiation and polarization signatures from first-principles-integrated simulations are consistent with the TEMZ model, except that in the latter, there is a weak correlation, with zero lag, between flux and degree of polarization. 
    more » « less
  4. Abstract We report the study of a huge optical intraday flare on 2021 November 12 at 2 a.m. UT in the blazar OJ 287. In the binary black hole model, it is associated with an impact of the secondary black hole on the accretion disk of the primary. Our multifrequency observing campaign was set up to search for such a signature of the impact based on a prediction made 8 yr earlier. The firstI-band results of the flare have already been reported by Kishore et al. (2024). Here we combine these data with our monitoring in theR-band. There is a big change in theR–Ispectral index by 1.0 ± 0.1 between the normal background and the flare, suggesting a new component of radiation. The polarization variation during the rise of the flare suggests the same. The limits on the source size place it most reasonably in the jet of the secondary BH. We then ask why we have not seen this phenomenon before. We show that OJ 287 was never before observed with sufficient sensitivity on the night when the flare should have happened according to the binary model. We also study the probability that this flare is just an oversized example of intraday variability using the Krakow data set of intense monitoring between 2015 and 2023. We find that the occurrence of a flare of this size and rapidity is unlikely. In machine-readable Tables 1 and 2, we give the full orbit-linked historical light curve of OJ 287 as well as the dense monitoring sample of Krakow. 
    more » « less
    Free, publicly-accessible full text available June 1, 2025
  5. One of the most well-known extragalactic sources in the sky, quasar3C 454.3, shows a curved parsec-scale jet that has been exhaustively monitored with very-long-baseline interferometry (VLBI) over the recent years. In this work, we present a comprehensive analysis of four years of high-frequency VLBI observations at 43 GHz and 86 GHz, between 2013–2017, in total intensity and linear polarization. The images obtained from these observations enabled us to study the jet structure and the magnetic field topology of the source on spatial scales down to 4.6 parsec in projected distance. The kinematic analysis reveals the abrupt vanishing of at least four new superluminal jet features in a characteristic jet region (i.e., region C), which is located at an approximate distance of 0.6 milliarcsec from the VLBI core. Our results support a model in which the jet bends, directing the relativistic plasma flow almost perfectly toward our line of sight, co-spatially with the region where components appear to stop. 
    more » « less
  6. Abstract We study the optical flux and polarization variability of the binary black hole blazar OJ 287 using quasi-simultaneous observations from 2015 to 2023 carried out using telescopes in the USA, Japan, Russia, Crimea, and Bulgaria. This is one of the most extensive quasi-simultaneous optical flux and polarization variability studies of OJ 287. OJ 287 showed large amplitude, ∼3.0 mag flux variability, large changes of ∼37% in degree of polarization, and a large swing of ∼215° in the angle of the electric vector of polarization. During the period of observation, several flares in flux were detected. Those flares are correlated with a rapid increase in the degree of polarization and swings in electric vector of polarization angle. A peculiar behavior of anticorrelation between flux and polarization degree, accompanied by a nearly constant polarization angle, was detected from JD 2,458,156 to JD 2,458,292. We briefly discuss some explanations for the flux and polarization variations observed in OJ 287. 
    more » « less
  7. Coyle, Laura E; Perrin, Marshall D; Matsuura, Shuji (Ed.)
    Free, publicly-accessible full text available August 23, 2025
  8. Abstract How astrophysical systems translate the kinetic energy of bulk motion into the acceleration of particles to very high energies is a pressing question. SS 433 is a microquasar that emits TeVγ-rays indicating the presence of high-energy particles. A region of hard X-ray emission in the eastern lobe of SS 433 was recently identified as an acceleration site. We observed this region with the Imaging X-ray Polarimetry Explorer and measured a polarization degree in the range 38%–77%. The high polarization degree indicates the magnetic field has a well-ordered component if the X-rays are due to synchrotron emission. The polarization angle is in the range −12° to +10° (east of north), which indicates that the magnetic field is parallel to the jet. Magnetic fields parallel to the bulk flow have also been found in supernova remnants and the jets of powerful radio galaxies. This may be caused by interaction of the flow with the ambient medium. 
    more » « less
  9. The Event Horizon Telescope (EHT) observation of M87in 2018 has revealed a ring with a diameter that is consistent with the 2017 observation. The brightest part of the ring is shifted to the southwest from the southeast. In this paper, we provide theoretical interpretations for the multi-epoch EHT observations for M87by comparing a new general relativistic magnetohydrodynamics model image library with the EHT observations for M87in both 2017 and 2018. The model images include aligned and tilted accretion with parameterized thermal and nonthermal synchrotron emission properties. The 2018 observation again shows that the spin vector of the M87supermassive black hole is pointed away from Earth. A shift of the brightest part of the ring during the multi-epoch observations can naturally be explained by the turbulent nature of black hole accretion, which is supported by the fact that the more turbulent retrograde models can explain the multi-epoch observations better than the prograde models. The EHT data are inconsistent with the tilted models in our model image library. Assuming that the black hole spin axis and its large-scale jet direction are roughly aligned, we expect the brightest part of the ring to be most commonly observed 90 deg clockwise from the forward jet. This prediction can be statistically tested through future observations. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  10. Abstract We present polarization measurements in the 2–8 keV band from blazar 1ES 0229+200, the first extreme high synchrotron peaked source to be observed by the Imaging X-ray Polarimetry Explorer (IXPE). Combining two exposures separated by about two weeks, we find the degree of polarization to be ΠX= 17.9% ± 2.8% at an electric-vector position angleψX= 25.°0 ± 4.°6 using a spectro-polarimetric fit from joint IXPE and XMM-Newton observations. There is no evidence for the polarization degree or angle varying significantly with energy or time on both short timescales (hours) or longer timescales (days). The contemporaneous polarization degree at optical wavelengths was >7× lower, making 1ES 0229+200 the most strongly chromatic blazar yet observed. This high X-ray polarization compared to the optical provides further support that X-ray emission in high-peaked blazars originates in shock-accelerated, energy-stratified electron populations, but is in tension with many recent modeling efforts attempting to reproduce the spectral energy distribution of 1ES 0229+200, which attribute the extremely high energy synchrotron and Compton peaks to Fermi acceleration in the vicinity of strongly turbulent magnetic fields. 
    more » « less