skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Martin, Joshua"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 17, 2025
  2. Abstract

    The development of new materials and their compositional and microstructural optimization are essential in regard to next-generation technologies such as clean energy and environmental sustainability. However, materials discovery and optimization have been a frustratingly slow process. The Edisonian trial-and-error process is time consuming and resource inefficient, particularly when contrasted with vast materials design spaces1. Whereas traditional combinatorial deposition methods can generate material libraries2,3, these suffer from limited material options and inability to leverage major breakthroughs in nanomaterial synthesis. Here we report a high-throughput combinatorial printing method capable of fabricating materials with compositional gradients at microscale spatial resolution. In situ mixing and printing in the aerosol phase allows instantaneous tuning of the mixing ratio of a broad range of materials on the fly, which is an important feature unobtainable in conventional multimaterials printing using feedstocks in liquid–liquid or solid–solid phases4–6. We demonstrate a variety of high-throughput printing strategies and applications in combinatorial doping, functional grading and chemical reaction, enabling materials exploration of doped chalcogenides and compositionally graded materials with gradient properties. The ability to combine the top-down design freedom of additive manufacturing with bottom-up control over local material compositions promises the development of compositionally complex materials inaccessible via conventional manufacturing approaches.

     
    more » « less
  3. Complex tasks like hunting moving prey in an unpredictable environment require high levels of motor and sensory integration. An animal needs to detect and track suitable prey objects, measure their distance and orientation relative to its own position, and finally produce the correct motor output to approach and capture the prey. In the insect brain, the central complex (CX) is one target area where integration is likely to take place. In this study, we performed extracellular multi-unit recordings on the CX of freely hunting praying mantises (Tenodera sinensis). Initially, we recorded the neural activity of freely moving mantises as they hunted live prey. The recordings showed activity in cells that either reflected the mantis's own movements or the actions of a prey individual, which the mantises focused on. In the latter case, the activity increased as the prey moved and decreased when it stopped. Interestingly, cells ignored the movement of the other prey than the one to which the mantis attended. To obtain quantitative data, we generated simulated prey targets presented on an LCD screen positioned below the clear floor of the arena. The simulated target oscillated back and forth at various angles and distances. We identified populations of cells whose activity patterns were strongly linked to the appearance, movement, and relative position of the virtual prey. We refer to these as sensory responses. We also found cells whose activity preceded orientation movement toward the prey. We call these motor responses. Some cells showed both sensory and motor properties. Stimulation through tetrodes in some of the preparations could also generate similar movements. These results suggest the crucial importance of the CX to prey-capture behavior in predatory insects like the praying mantis and, hence, further emphasize its role in behaviorally and ecologically relevant contexts.

     
    more » « less
  4. Quaternary chalcogenides continue to be of interest due to the variety of physical properties they possess, as well as their potential for different applications of interest. Investigations on materials with the sphalerite crystal structure have only recently begun. In this study we have synthesized sulfur-based sphalerite quaternary chalcogenides, including off-stoichiometric compositions, and investigated the temperature-dependent electronic, thermal and structural properties of these materials. Insulating to semiconducting transport is observed with stoichiometric variation, and analyses of heat capacity and thermal expansion revealed lattice anharmonicity that contributes to the low thermal conductivity these materials possess. We include similar analyses for CuZn 2 InSe 4 and compare these sphalerite quaternary chalcogenides to that of zinc blende binaries in order to fully understand the origin of the low thermal conductivity these quaternary chalcogenides possess. 
    more » « less
  5. null (Ed.)
  6. null (Ed.)
  7. Image sensors with programmable region-of-interest (ROI) readout are a new sensing technology important for energyefficient embedded computer vision. In particular, ROIs can subsample the number of pixels being readout while performing single object tracking in a video. In this paper, we develop adaptive sampling algorithms which perform joint object tracking and predictive video subsampling. We utilize an object detection consisting of either mean shift tracking or a neural network, coupled with a Kalman filter for prediction. We show that our algorithms achieve mean average precision of 0.70 or higher on a dataset of 20 videos in software. Further, we implement hardware acceleration of mean shift tracking with Kalman filter adaptive subsampling on an FPGA. Hardware results show a 23× improvement in clock cycles and latency as compared to baseline methods and achieves 38FPS real-time performance. This research points to a new domain of hardware-software co-design for adaptive video subsampling in embedded computer vision. 
    more » « less
  8. null (Ed.)
    Abstract This work describes select narratives pertaining to undergraduate teaching and mentorship at UCLA Chemistry and Biochemistry by Alex Spokoyny and his junior colleagues. Specifically, we discuss how individual undergraduate researchers contributed and jump-started multiple research themes since the conception of our research laboratory. This work also describes several recent innovations in the inorganic and general chemistry courses taught by Spokoyny at UCLA with a focus of nurturing appreciation for research and creative process in sciences including the use of social media platforms. 
    more » « less