Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract The direct detection of core-collapse supernova (SN) progenitor stars is a powerful way of probing the last stages of stellar evolution. However, detections in archival Hubble Space Telescope images are limited to about one detection per year. Here, we explore whether we can increase the detection rate by using data from ground-based wide-field surveys. Due to crowding and atmospheric blurring, progenitor stars can typically not be identified in preexplosion images alone. Instead, we combine many pre-SN and late-time images to search for the disappearance of the progenitor star. As a proof of concept, we implement our search of ZTF data. For a few hundred images, we achieve limiting magnitudes of ∼23 mag in thegandrbands. However, no progenitor stars or long-lived outbursts are detected for 29 SNe withinz≤ 0.01, and the ZTF limits are typically several magnitudes less constraining than detected progenitors in the literature. Next, we estimate progenitor detection rates for the Legacy Survey of Space and Time (LSST) with the Vera C. Rubin telescope by simulating a population of nearby SNe. The background from bright host galaxies reduces the nominal LSST sensitivity by, on average, 0.4 mag. Over the 10 yr survey, we expect the detection of ∼50 red supergiant progenitors and several yellow and blue supergiants. The progenitors of Type Ib and Ic SNe will be detectable if they are brighter than −4.7 or −4.0 mag in the LSSTiband, respectively. In addition, we expect the detection of hundreds of pre-SN outbursts depending on their brightness and duration.more » « less
- 
            Abstract About 3%–10% of Type I active galactic nuclei (AGNs) have double-peaked broad Balmer lines in their optical spectra originating from the motion of gas in their accretion disk. Double-peaked profiles arise not only in AGNs, but occasionally appear during optical flares from tidal disruption events and changing-state AGNs. In this paper, we identify 250 double-peaked emitters (DPEs) among a parent sample of optically variable broad-line AGNs in the Zwicky Transient Facility (ZTF) survey, corresponding to a DPE fraction of 19%. We model spectra of the broad Hαemission-line regions and provide a catalog of the fitted accretion disk properties for the 250 DPEs. Analysis of power spectra derived from the 5 yr ZTF light curves finds that DPE light curves have similar amplitudes and power-law indices to other broad-line AGNs. Follow-up spectroscopy of 12 DPEs reveals that ∼50% display significant changes in the relative strengths of their red and blue peaks over long 10–20 yr timescales, indicating that broad-line profile changes arising from spiral arm or hotspot rotation are common among optically variable DPEs. Analysis of the accretion disk parameters derived from spectroscopic modeling provides evidence that DPEs are not in a special accretion state, but are simply normal broad-line AGNs viewed under the right conditions for the accretion disk to be easily visible. We include inspiraling supermassive black hole binary candidate SDSSJ1430+2303 in our analysis, and discuss how its photometric and spectroscopic variability is consistent with the disk-emitting AGN population in the ZTF survey.more » « less
- 
            Abstract We present a sample of 34 normal Type II supernovae (SNe II) detected with the Zwicky Transient Facility, with multiband UV light curves starting att≤ 4 days after explosion, and X-ray observations. We characterize the early UV-optical color, provide empirical host-extinction corrections, and show that thet> 2 day UV-optical colors and the blackbody evolution of the sample are consistent with shock cooling (SC) regardless of the presence of “flash ionization” features. We present a framework for fitting SC models that can reproduce the parameters of a set of multigroup simulations up to 20% in radius and velocity. Observations of 15 SNe II are well fit by models with breakout radii <1014cm. Eighteen SNe are typically more luminous, with observations att≥ 1 day that are better fit by a model with a large >1014cm breakout radius. However, these fits predict an early rise during the first day that is too slow. We suggest that these large-breakout events are explosions of stars with an inflated envelope or with confined circumstellar material (CSM). Using the X-ray data, we derive constraints on the extended (∼1015cm) CSM density independent of spectral modeling and find that most SN II progenitors lose up to a few years before explosion. We show that the overall observed breakout radius distribution is skewed to higher radii due to a luminosity bias. We argue that the of red supergiants (RSGs) explode as SNe II with breakout radii consistent with the observed distribution of RSGs, with a tail extending to large radii, likely due to the presence of CSM.more » « less
- 
            Abstract We report the discovery of three ultracompact binary white dwarf systems hosting accretion disks, with orbital periods of 7.95, 8.68, and 13.15 minutes. This significantly augments the population of mass-transferring binaries at the shortest periods, and provides the first evidence that accretors in ultracompacts can be dense enough to host accretion disks even below 10 minutes (where previously only direct-impact accretors were known). In the two shortest-period systems, we measured changes in the orbital periods driven by the combined effect of gravitational-wave emission and mass transfer. We find is negative in one case, and positive in the other. This is only the second system measured with a positive , and it is the most compact binary known that has survived a period minimum. Using these systems as examples, we show how the measurement of is a powerful tool in constraining the physical properties of binaries, e.g., the mass and mass–radius relation of the donor stars. We find that the chirp masses of ultracompact binaries at these periods seem to cluster around , perhaps suggesting a common origin for these systems or a selection bias in electromagnetic discoveries. Our new systems are among the highest-amplitude known gravitational-wave sources in the millihertz regime, providing an exquisite opportunity for multimessenger study with future space-based observatories such as LISA and TianQin. We discuss how such systems provide fascinating laboratories to study the unique regime where the accretion process is mediated by gravitational waves.more » « lessFree, publicly-accessible full text available December 1, 2025
- 
            Abstract Jupiter-family comet (JFC) P/2021 HS (PANSTARRS) only exhibits a coma within a few weeks of its perihelion passage at 0.8 au, which is atypical for a comet. Here we present an investigation into the underlying cause using serendipitous survey detections and targeted observations. We find that the detection of the activity is caused by an extremely faint coma being enhanced by the forward scattering effect owing to the comet reaching a phase angle of ∼140°. The coma morphology is consistent with sustained, sublimation-driven activity produced by a small active area, ∼700 m 2 , one of the smallest values ever measured on a comet. The phase function of the nucleus shows a phase coefficient of 0.035 ± 0.002 mag deg −1 , implying an absolute magnitude of H = 18.31 ± 0.04 and a phase slope of G = − 0.13, with color consistent with typical JFC nuclei. Thermal observations suggest a nucleus diameter of 0.6–1.1 km, implying an optical albedo of 0.04–0.23, which is higher than typical cometary nuclei. An unsuccessful search for dust trail and meteor activity confirms minimal dust deposit along the orbit, totaling ≲10 8 kg. As P/2021 HS is dynamically unstable, similar to typical JFCs, we speculate that it has an origin in the trans-Neptunian region and that its extreme depletion of volatiles is caused by a large number of previous passages to the inner solar system. The dramatic discovery of the cometary nature of P/2021 HS highlights the challenges of detecting comets with extremely low activity levels. Observations at high phase angle, where forward scattering is pronounced, will help identify such comets.more » « less
- 
            Abstract We present the firstgri-band period–luminosity (PL) and period–Wesenheit (PW) relations for the fundamental mode anomalous Cepheids. These PL and PW relations were derived from a combined sample of five anomalous Cepheids in globular cluster M92 and the Large Magellanic Cloud, both of which have distance accurate to ∼1% available from literature. Ourg-band PL relation is similar to theB-band PL relation as reported in previous study. We applied our PL and PW relations to anomalous Cepheids discovered in dwarf galaxy Crater II, and found a larger but consistent distance modulus than the recent measurements based on RR Lyrae. Our calibrations ofgri-band PL and PW relations, even though less precise due to small number of anomalous Cepheids, will be useful for distance measurements to dwarf galaxies.more » « less
- 
            Abstract While it is difficult to observe the first black hole seeds in the early universe, we can study intermediate-mass black holes (IMBHs) in local dwarf galaxies for clues about their origins. In this paper we present a sample of variability-selected active galactic nuclei (AGN) in dwarf galaxies using optical photometry from the Zwicky Transient Facility (ZTF) and forward-modeled mid-IR photometry of time-resolved Wide-field Infrared Survey Explorer (WISE) co-added images. We found that 44 out of 25,714 dwarf galaxies had optically variable AGN candidates and 148 out of 79,879 dwarf galaxies had mid-IR variable AGN candidates, corresponding to active fractions of 0.17% ± 0.03% and 0.19% ± 0.02%, respectively. We found that spectroscopic approaches to AGN identification would have missed 81% of our ZTF IMBH candidates and 69% of our WISE IMBH candidates. Only nine candidates have been detected previously in radio, X-ray, and variability searches for dwarf galaxy AGN. The ZTF and WISE dwarf galaxy AGN with broad Balmer lines have virial masses of 10 5 M ⊙ < M BH < 10 7 M ⊙ , but for the rest of the sample, BH masses predicted from host galaxy mass range between 10 5.2 M ⊙ < M BH < 10 7.25 M ⊙ . We found that only 5 of 152 previously reported variability-selected AGN candidates from the Palomar Transient Factory in common with our parent sample were variable in ZTF. We also determined a nuclear supernova fraction of 0.05% ± 0.01% yr −1 for dwarf galaxies in ZTF. Our ZTF and WISE IMBH candidates show the promise of variability searches for the discovery of otherwise hidden low-mass AGN.more » « less
- 
            Abstract Magnetic cataclysmic variables (CVs) are luminous Galactic X-ray sources, which have been difficult to find in purely optical surveys due to their lack of outburst behavior. The eROSITA telescope on board the Spektr-RG mission is conducting an all-sky X-ray survey and recently released the public eROSITA Final Equatorial Depth Survey (eFEDS) catalog. We crossmatched the eFEDS catalog with photometry from the Zwicky Transient Facility and discovered two new magnetic CVs. We obtained high-cadence optical photometry and phase-resolved spectroscopy for each magnetic CV candidate and found them both to be polars. Among the newly discovered magnetic CVs is eFEDS J085037.2+044359/ZTFJ0850+0443, an eclipsing polar with orbital period P orb = 1.72 hr and WD mass M WD = 0.81 ± 0.08 M ⊙ . We suggest that eFEDS J085037.2+044359/ZTFJ0850+0443 is a low magnetic field strength polar, with B WD ≲ 10 MG. We also discovered a non-eclipsing polar, eFEDS J092614.1+010558/ZTFJ0926+0105, with orbital period P orb = 1.47 hr and magnetic field strength B WD = 36–42 MG.more » « less
- 
            Abstract The detonation of a thin (≲0.03 M ⊙ ) helium shell (He-shell) atop a ∼1 M ⊙ white dwarf (WD) is a promising mechanism to explain normal Type Ia supernovae (SNe Ia), while thicker He-shells and less massive WDs may explain some recently observed peculiar SNe Ia. We present observations of SN 2020jgb, a peculiar SN Ia discovered by the Zwicky Transient Facility (ZTF). Near maximum brightness, SN 2020jgb is slightly subluminous (ZTF g -band absolute magnitude −18.7 mag ≲ M g ≲ −18.2 mag depending on the amount of host-galaxy extinction) and shows an unusually red color (0.2 mag ≲ g ZTF − r ZTF ≲ 0.4 mag) due to strong line-blanketing blueward of ∼5000 Å. These properties resemble those of SN 2018byg, a peculiar SN Ia consistent with an He-shell double detonation (DDet) SN. Using detailed radiative transfer models, we show that the optical spectroscopic and photometric evolution of SN 2020jgb is broadly consistent with a ∼0.95–1.00 M ⊙ (C/O core + He-shell) progenitor ignited by a ≳0.1 M ⊙ He-shell. However, one-dimensional radiative transfer models without non-local-thermodynamic-equilibrium treatment cannot accurately characterize the line-blanketing features, making the actual shell mass uncertain. We detect a prominent absorption feature at ∼1 μ m in the near-infrared (NIR) spectrum of SN 2020jgb, which might originate from unburnt helium in the outermost ejecta. While the sample size is limited, we find similar 1 μ m features in all the peculiar He-shell DDet candidates with NIR spectra obtained to date. SN 2020jgb is also the first peculiar He-shell DDet SN discovered in a star-forming dwarf galaxy, indisputably showing that He-shell DDet SNe occur in both star-forming and passive galaxies, consistent with the normal SN Ia population.more » « less
- 
            Abstract The accretion disks of active galactic nuclei (AGNs) are promising locations for the merger of compact objects detected by gravitational wave (GW) observatories. Embedded within a baryon-rich, high-density environment, mergers within AGNs are the only GW channel where an electromagnetic (EM) counterpart must occur (whether detectable or not). Considering AGNs with unusual flaring activity observed by the Zwicky Transient Facility (ZTF), we describe a search for candidate EM counterparts to binary black hole (BBH) mergers detected by LIGO/Virgo in O3. After removing probable false positives, we find nine candidate counterparts to BBH mergers during O3 (seven in O3a, two in O3b) with ap-value of 0.0019. Based on ZTF sky coverage, AGN geometry, and merger geometry, we expect ≈3(NBBH/83)(fAGN/0.5) potentially detectable EM counterparts from O3, whereNBBHis the total number of observed BBH mergers andfAGNis the fraction originating in AGNs. Further modeling of breakout and flaring phenomena in AGN disks is required to reduce our false-positive rate. Two of the events are also associated with mergers with total masses >100M⊙, which is the expected rate for O3 if hierarchical (large-mass) mergers occur in the AGN channel. Candidate EM counterparts in future GW observing runs can be better constrained by coverage of the Southern sky as well as spectral monitoring of unusual AGN flaring events in LIGO/Virgo alert volumes. A future set of reliable AGN EM counterparts to BBH mergers will yield an independent means of measuring cosmic expansion (H0) as a function of redshift.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
