skip to main content


Search for: All records

Creators/Authors contains: "Masouros, Christos"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 1, 2025
  2. This paper focuses on designing robust symbol-level precoding (SLP) in an overlay cognitive radio (CR) network, where the primary and secondary networks transmit signals concurrently. When the primary base station (PBS) shares data and perfect channel state information (CSI) with the cognitive base station (CBS), we derive an SLP approach that minimizes the CR transmission power and satisfies symbol-wise Safety Margin (SM) constraints of both primary users (PUs) and cognitive users (CUs). The resulting optimization has a quadratic objective and linear inequality (LI) constraints, which can be solved by standard convex methods. For the case of imperfect CSI from the PBS, we propose robust SLP schemes. First, with a norm-bounded CSI error model to approximate the uncertain channels, we adopt a max-min philosophy to conservatively achieve robust SLP constraints. Second, we use the additive quantization noise model (AQNM) to describe the quantized PBS CSI and employ a stochastic constraint to formulate the problem. Both robust approaches also result in a quadratic objective with LI constraints. Simulation results show that, rather than simply trying to eliminate the network’s cross-interference, the proposed robust SLP schemes enable the primary and secondary networks to aid each other in meeting their quality of service constraints. 
    more » « less
    Free, publicly-accessible full text available February 1, 2025
  3. Symbol-level precoding (SLP) based on the concept of constructive interference (CI) is shown to be superior to traditional block-level precoding (BLP), however at the cost of a symbol-by-symbol optimization during the precoding design. In this paper, we propose a CI-based block-level precoding (CI-BLP) scheme for the downlink transmission of a multi-user multiple-input single-output (MU-MISO) communication system, where we design a constant precoding matrix to a block of symbol slots to exploit CI for each symbol slot simultaneously. A single optimization problem is formulated to maximize the minimum CI effect over the entire block, thus reducing the computational cost of traditional SLP as the optimization problem only needs to be solved once per block. By leveraging the Karush-Kuhn-Tucker (KKT) conditions and the dual problem formulation, the original optimization problem is finally shown to be equivalent to a quadratic programming (QP) over a simplex. Numerical results validate our derivations and exhibit superior performance for the proposed CI-BLP scheme over traditional BLP and SLP methods, thanks to the relaxed block-level power constraint. 
    more » « less
  4. null (Ed.)