skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Masouros, Christos"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 1, 2026
  2. Free, publicly-accessible full text available February 1, 2026
  3. This article investigates block-level interference exploitation (IE) precoding for multiuser multiple-input-single-output (MU-MISO) downlink systems. To overcome the need for symbol-level IE precoding to frequently update the precoding matrix, we propose to jointly optimize all the precoders or transmit signals within a transmission block. The resultant precoders only need to be updated once per block, and while not necessarily constant over all the symbol slots, we refer to the technique as block-level slot-variant IE precoding. Through a careful examination of the optimal structure and the explicit duality inherent in block-level power minimization (PM) and signal-to-interference-plus-noise ratio (SINR) balancing (SB) problems, we discover that the joint optimization can be decomposed into subproblems with smaller variable sizes. As a step further, we propose block-level slot-invariant IE precoding by adding a structural constraint on the slot-variant IE precoding to maintain a constant precoder throughout the block. A novel linear precoder for IE is further presented, and we prove that the proposed slot-variant and slot-invariant IE precoding share an identical solution when the number of symbol slots does not exceed the number of users. Numerical simulations demonstrate that the proposed precoders achieve a significant complexity reduction compared against benchmark schemes, without sacrificing performance. 
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  4. This paper focuses on designing robust symbol-level precoding (SLP) in an overlay cognitive radio (CR) network, where the primary and secondary networks transmit signals concurrently. When the primary base station (PBS) shares data and perfect channel state information (CSI) with the cognitive base station (CBS), we derive an SLP approach that minimizes the CR transmission power and satisfies symbol-wise Safety Margin (SM) constraints of both primary users (PUs) and cognitive users (CUs). The resulting optimization has a quadratic objective and linear inequality (LI) constraints, which can be solved by standard convex methods. For the case of imperfect CSI from the PBS, we propose robust SLP schemes. First, with a norm-bounded CSI error model to approximate the uncertain channels, we adopt a max-min philosophy to conservatively achieve robust SLP constraints. Second, we use the additive quantization noise model (AQNM) to describe the quantized PBS CSI and employ a stochastic constraint to formulate the problem. Both robust approaches also result in a quadratic objective with LI constraints. Simulation results show that, rather than simply trying to eliminate the network’s cross-interference, the proposed robust SLP schemes enable the primary and secondary networks to aid each other in meeting their quality of service constraints. 
    more » « less
  5. Beyond diagonal reconfigurable intelligent surfaces (BD-RIS) with interconnected reflecting elements present an emerging technology for manipulating the propagation environment, and their new structure requires careful investigation. In this paper, we explore BD-RIS-aided power minimization beamforming, where the BD-RIS scattering matrix and transmit beamforming are jointly optimized under nonconvex constraints related to signal-to-interference-plus-noise ratio (SINR) thresholds and the structure of the scattering matrix. To efficiently solve the problem, we propose a single-loop algorithm, where we adopt a variable splitting strategy with an auxiliary variable to split the scattering matrix, and then alternately update the resulting variables. Through further derivations, we show that each nonconvex subproblem can be solved efficiently. Simulation results demonstrate the high efficiency of our proposed single loop algorithm and the effectiveness of BD-RIS in improving performance. 
    more » « less
    Free, publicly-accessible full text available June 8, 2026
  6. Symbol-level precoding (SLP) based on the concept of constructive interference (CI) is shown to be superior to traditional block-level precoding (BLP), however at the cost of a symbol-by-symbol optimization during the precoding design. In this paper, we propose a CI-based block-level precoding (CI-BLP) scheme for the downlink transmission of a multi-user multiple-input single-output (MU-MISO) communication system, where we design a constant precoding matrix to a block of symbol slots to exploit CI for each symbol slot simultaneously. A single optimization problem is formulated to maximize the minimum CI effect over the entire block, thus reducing the computational cost of traditional SLP as the optimization problem only needs to be solved once per block. By leveraging the Karush-Kuhn-Tucker (KKT) conditions and the dual problem formulation, the original optimization problem is finally shown to be equivalent to a quadratic programming (QP) over a simplex. Numerical results validate our derivations and exhibit superior performance for the proposed CI-BLP scheme over traditional BLP and SLP methods, thanks to the relaxed block-level power constraint. 
    more » « less