skip to main content

Search for: All records

Creators/Authors contains: "Masuda, Naoki"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Recent developments of eco-evolutionary models have shown that evolving feedbacks between behavioral strategies and the environment of game interactions, leading to changes in the underlying payoff matrix, can impact the underlying population dynamics in various manners. We propose and analyze an eco-evolutionary game dynamics model on a network with two communities such that players interact with other players in the same community and those in the opposite community at different rates. In our model, we consider two-person matrix games with pairwise interactions occurring on individual edges and assume that the environmental state depends on edges rather than on nodes or being globally shared in the population. We analytically determine the equilibria and their stability under a symmetric population structure assumption, and we also numerically study the replicator dynamics of the general model. The model shows rich dynamical behavior, such as multiple transcritical bifurcations, multistability, and anti-synchronous oscillations. Our work offers insights into understanding how the presence of community structure impacts the eco-evolutionary dynamics within and between niches.

    more » « less
  2. Abstract

    Manga, Japanese comics, has been popular on a global scale. Social networks among characters, which are often called character networks, may be a significant contributor to their popularity. We collected data from 162 popular manga that span over 70 years and analyzed their character networks. First, we found that many of static and temporal properties of the character networks are similar to those of real human social networks. Second, the character networks of most manga are protagonist-centered such that a single protagonist interacts with the majority of other characters. Third, the character networks for manga mainly targeting boys have shifted to denser and less protagonist-centered networks and with fewer characters over decades. Manga mainly targeting girls showed the opposite trend except for the downward trend in the number of characters. The present study, which relies on manga data sampled on an unprecedented scale, paves the way for further population studies of character networks and other aspects of comics.

    more » « less
    Free, publicly-accessible full text available December 1, 2024
  3. Abstract

    Population structure has been known to substantially affect evolutionary dynamics. Networks that promote the spreading of fitter mutants are called amplifiers of selection, and those that suppress the spreading of fitter mutants are called suppressors of selection. Research in the past two decades has found various families of amplifiers while suppressors still remain somewhat elusive. It has also been discovered that most networks are amplifiers of selection under the birth-death updating combined with uniform initialization, which is a standard condition assumed widely in the literature. In the present study, we extend the birth-death processes to temporal (i.e., time-varying) networks. For the sake of tractability, we restrict ourselves to switching temporal networks, in which the network structure deterministically alternates between two static networks at constant time intervals or stochastically in a Markovian manner. We show that, in a majority of cases, switching networks are less amplifying than both of the two static networks constituting the switching networks. Furthermore, most small switching networks, i.e., networks on six nodes or less, are suppressors, which contrasts to the case of static networks.

    more » « less
    Free, publicly-accessible full text available November 1, 2024
  4. Fu, Feng (Ed.)

    With the recent availability of tissue-specific gene expression data, e.g., provided by the GTEx Consortium, there is interest in comparing gene co-expression patterns across tissues. One promising approach to this problem is to use a multilayer network analysis framework and perform multilayer community detection. Communities in gene co-expression networks reveal groups of genes similarly expressed across individuals, potentially involved in related biological processes responding to specific environmental stimuli or sharing common regulatory variations. We construct a multilayer network in which each of the four layers is an exocrine gland tissue-specific gene co-expression network. We develop methods for multilayer community detection with correlation matrix input and an appropriate null model. Our correlation matrix input method identifies five groups of genes that are similarly co-expressed in multiple tissues (a community that spans multiple layers, which we call a generalist community) and two groups of genes that are co-expressed in just one tissue (a community that lies primarily within just one layer, which we call a specialist community). We further found gene co-expression communities where the genes physically cluster across the genome significantly more than expected by chance (on chromosomes 1 and 11). This clustering hints at underlying regulatory elements determining similar expression patterns across individuals and cell types. We suggest thatKRTAP3-1,KRTAP3-3, andKRTAP3-5share regulatory elements in skin and pancreas. Furthermore, we find thatCELA3AandCELA3Bshare associated expression quantitative trait loci in the pancreas. The results indicate that our multilayer community detection method for correlation matrix input extracts biologically interesting communities of genes.

    more » « less
    Free, publicly-accessible full text available November 17, 2024
  5. Wodarz, Dominik (Ed.)

    Hypergraphs have been a useful tool for analyzing population dynamics such as opinion formation and the public goods game occurring in overlapping groups of individuals. In the present study, we propose and analyze evolutionary dynamics on hypergraphs, in which each node takes one of the two types of different but constant fitness values. For the corresponding dynamics on conventional networks, under the birth-death process and uniform initial conditions, most networks are known to be amplifiers of natural selection; amplifiers by definition enhance the difference in the strength of the two competing types in terms of the probability that the mutant type fixates in the population. In contrast, we provide strong computational evidence that a majority of hypergraphs are suppressors of selection under the same conditions by combining theoretical and numerical analyses. We also show that this suppressing effect is not explained by one-mode projection, which is a standard method for expressing hypergraph data as a conventional network. Our results suggest that the modeling framework for structured populations in addition to the specific network structure is an important determinant of evolutionary dynamics, paving a way to studying fixation dynamics on higher-order networks including hypergraphs.

    more » « less
    Free, publicly-accessible full text available September 26, 2024
  6. Abstract

    Network structure is a mechanism for promoting cooperation in social dilemma games. In the present study, we explore graph surgery, i.e., to slightly perturb the given network, towards a network that better fosters cooperation. To this end, we develop a perturbation theory to assess the change in the propensity of cooperation when we add or remove a single edge to/from the given network. Our perturbation theory is for a previously proposed random-walk-based theory that provides the threshold benefit-to-cost ratio,$$(b/c)^*$$(b/c), which is the value of the benefit-to-cost ratio in the donation game above which the cooperator is more likely to fixate than in a control case, for any finite networks. We find that$$(b/c)^*$$(b/c)decreases when we remove a single edge in a majority of cases and that our perturbation theory captures at a reasonable accuracy which edge removal makes$$(b/c)^*$$(b/c)small to facilitate cooperation. In contrast,$$(b/c)^*$$(b/c)tends to increase when we add an edge, and the perturbation theory is not good at predicting the edge addition that changes$$(b/c)^*$$(b/c)by a large amount. Our perturbation theory significantly reduces the computational complexity for calculating the outcome of graph surgery.

    more » « less
  7. Successfully anticipating sudden major changes in complex systems is a practical concern. Such complex systems often form a heterogeneous network, which may show multi-stage transitions in which some nodes experience a regime shift earlier than others as an environment gradually changes. Here we investigate early warning signals for networked systems undergoing a multi-stage transition. We found that knowledge of both the ongoing multi-stage transition and network structure enables us to calculate effective early warning signals for multi-stage transitions. Furthermore, we found that small subsets of nodes could anticipate transitions as well as or even better than using all the nodes. Even if we fix the network and dynamical system, no single best subset of nodes provides good early warning signals, and a good choice of sentinel nodes depends on the tipping direction and the current stage of the dynamics within a multi-stage transition, which we systematically characterize.

    more » « less
  8. Abstract

    Energy landscape analysis is a data‐driven method to analyse multidimensional time series, including functional magnetic resonance imaging (fMRI) data. It has been shown to be a useful characterization of fMRI data in health and disease. It fits an Ising model to the data and captures the dynamics of the data as movement of a noisy ball constrained on the energy landscape derived from the estimated Ising model. In the present study, we examine test–retest reliability of the energy landscape analysis. To this end, we construct a permutation test that assesses whether or not indices characterizing the energy landscape are more consistent across different sets of scanning sessions from the same participant (i.e. within‐participant reliability) than across different sets of sessions from different participants (i.e. between‐participant reliability). We show that the energy landscape analysis has significantly higher within‐participant than between‐participant test–retest reliability with respect to four commonly used indices. We also show that a variational Bayesian method, which enables us to estimate energy landscapes tailored to each participant, displays comparable test–retest reliability to that using the conventional likelihood maximization method. The proposed methodology paves the way to perform individual‐level energy landscape analysis for given data sets with a statistically controlled reliability.

    more » « less
  9. Many complex dynamical systems in the real world, including ecological, climate, financial and power-grid systems, often show critical transitions, or tipping points, in which the system’s dynamics suddenly transit into a qualitatively different state. In mathematical models, tipping points happen as a control parameter gradually changes and crosses a certain threshold. Tipping elements in such systems may interact with each other as a network, and understanding the behaviour of interacting tipping elements is a challenge because of the high dimensionality originating from the network. Here, we develop a degree-based mean-field theory for a prototypical double-well system coupled on a network with the aim of understanding coupled tipping dynamics with a low-dimensional description. The method approximates both the onset of the tipping point and the position of equilibria with a reasonable accuracy. Based on the developed theory and numerical simulations, we also provide evidence for multistage tipping point transitions in networks of double-well systems. 
    more » « less