Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Recovering 3D phase features of complex biological samples traditionally sacrifices computational efficiency and processing time for physical model accuracy and reconstruction quality. Here, we overcome this challenge using an approximant-guided deep learning framework in a high-speed intensity diffraction tomography system. Applying a physics model simulator-based learning strategy trained entirely on natural image datasets, we show our network can robustly reconstruct complex 3D biological samples. To achieve highly efficient training and prediction, we implement a lightweight 2D network structure that utilizes a multi-channel input for encoding the axial information. We demonstrate this framework on experimental measurements of weakly scattering epithelial buccal cells and strongly scatteringC. elegansworms. We benchmark the network’s performance against a state-of-the-art multiple-scattering model-based iterative reconstruction algorithm. We highlight the network’s robustness by reconstructing dynamic samples from a living worm video. We further emphasize the network’s generalization capabilities by recovering algae samples imaged from different experimental setups. To assess the prediction quality, we develop a quantitative evaluation metric to show that our predictions are consistent with both multiple-scattering physics and experimental measurements.more » « less
-
null (Ed.)Intensity Diffraction Tomography (IDT) is a new computational microscopy technique providing quantitative, volumetric, large field-of-view (FOV) phase imaging of biological samples. This approach uses computationally efficient inverse scattering models to recover 3D phase volumes of weakly scattering objects from intensity measurements taken under diverse illumination at a single focal plane. IDT is easily implemented in a standard microscope equipped with an LED array source and requires no exogenous contrast agents, making the technology widely accessible for biological research.Here, we discuss model and learning-based approaches for complex 3D object recovery with IDT. We present two model-based computational illumination strategies, multiplexed IDT (mIDT) [1] and annular IDT (aIDT) [2], that achieve high-throughput quantitative 3D object phase recovery at hardware-limited 4Hz and 10Hz volume rates, respectively. We illustrate these techniques on living epithelial buccal cells and Caenorhabditis elegans worms. For strong scattering object recovery with IDT, we present an uncertainty quantification framework for assessing the reliability of deep learning-based phase recovery methods [3]. This framework provides per-pixel evaluation of a neural network predictions confidence level, allowing for efficient and reliable complex object recovery. This uncertainty learning framework is widely applicable for reliable deep learning-based biomedical imaging techniques and shows significant potential for IDT.more » « less
-
Reflection phase imaging provides label-free, high-resolution characterization of biological samples, typically using interferometric-based techniques. Here, we investigate reflection phase microscopy fromintensity-only measurements under diverse illumination. We evaluate the forward and inverse scattering model based on the first Born approximation for imaging scattering objects above a glass slide. Under this design, the measured field combineslinearforward-scattering and height-dependentnonlinearback-scattering from the object that complicates object phase recovery. Using only the forward-scattering, we derive a linear inverse scattering model and evaluate this model’s validity range in simulation and experiment using a standard reflection microscope modified with a programmable light source. Our method provides enhanced contrast of thin, weakly scattering samples that complement transmission techniques. This model provides a promising development for creating simplified intensity-based reflection quantitative phase imaging systems easily adoptable for biological research.more » « less
-
LED array microscopy is an emerging platform for computational imaging with significant utility for biological imaging. Existing LED array systems often exploit transmission imaging geometries of standard brightfield microscopes that leave the rich backscattered field undetected. This backscattered signal contains high-resolution sample information with superb sensitivity to subtle structural features that make it ideal for biological sensing and detection. Here, we develop an LED array reflectance microscope capturing the sample’s backscattered signal. In particular, we demonstrate multimodal brightfield, darkfield, and differential phase contrast imaging on fixed and living biological specimens includingCaenorhabditis elegans (C. elegans), zebrafish embryos, and live cell cultures. Video-rate multimodal imaging at 20 Hz records real time features of freely movingC. elegansand the fast beating heart of zebrafish embryos. Our new reflectance mode is a valuable addition to the LED array microscopic toolbox.more » « less