Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Haystack and Owens Valley Radio Observatory observations recently revealed strong, intermittent, sinusoidal total flux-density variations that maintained their coherence between 1975 and 2021 in the blazar PKS 2131−021 (z= 1.283). This was interpreted as possible evidence of a supermassive black hole binary (SMBHB). Extended observations through 2023 show a coherence over 47.9 yr, with an observed periodP15 GHz= (1739.8 ± 17.4) days. We reject, withp-value = 2.09 × 10−7, the hypothesis that the variations are due to random fluctuations in the red noise tail of the power spectral density. There is clearly a physical phenomenon in PKS 2131−021 producing coherent sinusoidal flux-density variations. We find the coherent sinusoidal intensity variations extend from below 2.7 GHz to optical frequencies, from which we derive an observed periodPoptical= (1764 ± 36) days. Across this broad frequency range, there is a smoothly varying monotonic phase shift in the sinusoidal variations with frequency. Hints of periodic variations are also observed atγ-ray energies. The importance of well-vetted SMBHB candidates to searches for gravitational waves is pointed out. We estimate the fraction of blazars that are SMBHB candidates to be >1 in 100. Thus, monitoring programs covering tens of thousands of blazars could discover hundreds of SMBHB candidates.more » « lessFree, publicly-accessible full text available May 14, 2026
-
ABSTRACT We report on the discovery of one of the most extreme cases of high-frequency radio variability ever measured in active galactic nuclei (AGNs), observed on time-scales of days and exhibiting variability amplitudes of 3–4 orders of magnitude. These sources, all radio-weak narrow-line Seyfert 1 (NLS1) galaxies, were discovered some years ago at Aalto University Metsähovi Radio Observatory (MRO) based on recurring flaring at 37 GHz, strongly indicating the presence of relativistic jets. In subsequent observations with the Karl G. Jansky Very Large Array (JVLA) at 1.6, 5.2, and 9.0 GHz no signs of jets were seen. To determine the cause of their extraordinary behaviour, we observed them with the JVLA at 10, 15, 22, 33, and 45 GHz, and with the Very Long Baseline Array (VLBA) at 15 GHz. These observations were complemented with single-dish monitoring at 37 GHz at MRO, and at 15 GHz at Owens Valley Radio Observatory (OVRO). Intriguingly, all but one source either have a steep radio spectrum up to 45 GHz, or were not detected at all. Based on the 37 GHz data, the time-scales of the radio flares are a few days, and the derived variability brightness temperatures and variability Doppler factors are comparable to those seen in blazars. We discuss alternative explanations for their extreme behaviour, but so far no definite conclusions can be made. These sources exhibit radio variability at a level rarely, if ever, seen in AGN. They might represent a new type of jetted AGN, or a new variability phenomenon, and thus deserve our continued attention.more » « less
-
Context.Blazars, which include BL Lacs and flat-spectrum radio quasars, represent the brightest persistent extragalactic sources in the high-energy (HE; 10 MeV–100 GeV) and very-high-energy (VHE;E > 100 GeV)γ-ray sky. Due to their almost featureless optical/UV spectra, it is challenging to measure the redshifts of BL Lacs. As a result, about 50% ofγ-ray BL Lacs lack a firm measurement of this property, which is fundamental for population studies, indirect estimates of the extragalactic background light, and fundamental physics probes (e.g., searches for Lorentz-invariance violation or axion-like particles). Aims.This paper is the third in a series of papers aimed at determining the redshift of a sample of blazars selected as prime targets for future observations with the next generation, ground-based VHEγ-ray astronomy observatory, Cherenkov Telescope Array Observatory (CTAO). The accurate determination of the redshift of these objects is an important aid in source selection and planning of future CTAO observations. Methods.Promising targets were selected following a sample selection obtained with Monte Carlo simulations of CTAO observations. The selected targets were expected to be detectable with CTAO in observations of 30 h or less. We performed deep spectroscopic observations of 41 of these blazars using the Keck II, Lick, SALT, GTC, and ESO/VLT telescopes. We carefully searched for spectral lines in the spectra and whenever features of the host galaxy were detected, we attempted to model the properties of the host galaxy. The magnitudes of the targets at the time of the observations were also compared to their long-term light curves. Results.Spectra from 24 objects display spectral features or a high signal-to-noise ratio (S/N). From these, 12 spectroscopic redshifts were determined, ranging from 0.2223 to 0.7018. Furthermore, 1 tentative redshift (0.6622) and 2 redshift lower limits atz > 0.6185 andz > 0.6347 were obtained. The other 9 BL Lacs showed featureless spectra, despite the high S/N (≥100) observations. Our comparisons with long-term optical light curves tentatively suggest that redshift measurements are more straightforward during an optical low state of the active galactic nucleus. Overall, we have determined 37 redshifts and 6 spectroscopic lower limits as part of our programme thus far.more » « less
-
ABSTRACT Active galactic nuclei (AGNs) make up about 35 per cent of the more than 250 sources detected in very high-energy (VHE) gamma rays to date with the imaging atmospheric Cherenkov telescopes. Apart from four nearby radio galaxies and two AGNs of unknown type, all known VHE AGNs are blazars. Knowledge of the cosmological redshift of gamma-ray blazars is key to enabling the study of their intrinsic emission properties, as the interaction between gamma rays and the extragalactic background light (EBL) results in a spectral softening. Therefore, the redshift determination exercise is crucial to indirectly placing tight constraints on the EBL density, and to studying blazar population evolution across cosmic time. Due to the powerful relativistic jets in blazars, most of their host galaxies’ spectral features are outshined, and dedicated high signal-to-noise (S/N) spectroscopic observations are required. Deep medium- to high-resolution spectroscopy of 33 gamma-ray blazar optical counterparts was performed with the European Southern Observatory, New Technology Telescope, Keck II telescope, Shane 3-metre telescope, and the Southern African Large Telescope. From the sample, spectra from 25 objects display spectral features or are featureless and have high S/N. The other eight objects have low-quality featureless spectra. We systematically searched for absorption and emission features and estimated, when possible, the fractional host galaxy flux in the measured total flux. Our measurements yielded 14 firm spectroscopic redshifts, ranging from 0.0838 to 0.8125, one tentative redshift, and two lower limits: one at $z > 0.382$ and the other at z > 0.629.more » « less
-
null (Ed.)Context. Blazars are the most numerous class of high-energy (HE; E ∼ 50 MeV−100 GeV) and very high-energy (VHE; E ∼ 100 GeV−10 TeV) gamma-ray emitters. Currently, a measured spectroscopic redshift is available for only about 50% of gamma-ray BL Lacertae objects (BL Lacs), mainly due to the difficulty in measuring reliable redshifts from their nearly featureless continuum-dominated optical spectra. The knowledge of the redshift is fundamental for understanding the emission from blazars, for population studies and also for indirect studies of the extragalactic background light and searches for Lorentz invariance violation and axion-like particles using blazars. Aims. This paper is the first in a series of papers that aim to measure the redshift of a sample of blazars likely to be detected with the upcoming Cherenkov Telescope Array (CTA), a ground-based gamma-ray observatory. Methods. Monte Carlo simulations were performed to select those hard spectrum gamma-ray blazars detected with the Fermi -LAT telescope still lacking redshift measurements, but likely to be detected by CTA in 30 hours of observing time or less. Optical observing campaigns involving deep imaging and spectroscopic observations were organised to efficiently constrain their redshifts. We performed deep medium- to high-resolution spectroscopy of 19 blazar optical counterparts with the Keck II, SALT, and ESO NTT telescopes. We searched systematically for spectral features and, when possible, we estimated the contribution of the host galaxy to the total flux. Results. We measured eleven firm spectroscopic redshifts with values ranging from 0.1116 to 0.482, one tentative redshift, three redshift lower limits including one at z ≥ 0.449 and another at z ≥ 0.868. Four BL Lacs show featureless spectra.more » « less
-
Context.Blazars are beamed active galactic nuclei (AGNs) known for their strong multi-wavelength variability on timescales ranging from years down to minutes. Many different models have been proposed to explain this variability. Aims.We aim to investigate the suitability of the twisting jet model presented in previous works to explain the multi-wavelength behaviour of BL Lacertae, the prototype of one of the blazar classes. According to this model, the jet is inhomogeneous, curved, and twisting, and the long-term variability is due to changes in the Doppler factor due to variations in the orientation of the jet-emitting regions. Methods.We analysed optical data of the source obtained during monitoring campaigns organised by the Whole Earth Blazar Telescope (WEBT) in 2019–2022, together with radio data from the WEBT and other teams, andγ-ray data from theFermisatellite. In this period, BL Lacertae underwent an extraordinary activity phase, reaching its historical optical andγ-ray brightness maxima. Results.The application of the twisting jet model to the source light curves allows us to infer the wiggling motion of the optical, radio, andγ-ray jet-emitting regions. The optical-radio correlation shows that the changes in the radio viewing angle follow those in the optical viewing angle by about 120 days, and it suggests that the jet is composed of plasma filaments, which is in agreement with some radio high-resolution observations of other sources. Theγ-ray emitting region is found to be co-spatial with the optical one, and the analysis of theγ-optical correlation is consistent with both the geometric interpretation and a synchrotron self-Compton (SSC) origin of the high-energy photons. Conclusions.We propose a geometric scenario where the jet is made up of a pair of emitting plasma filaments in a sort of double-helix curved rotating structure, whose wiggling motion produces changes in the Doppler beaming and can thus explain the observed multi-wavelength long-term variability.more » « less
-
Aims.Mrk 421 was in its most active state around early 2010, which led to the highest TeV gamma-ray flux ever recorded from any active galactic nuclei (AGN). We aim to characterize the multiwavelength behavior during this exceptional year for Mrk 421, and evaluate whether it is consistent with the picture derived with data from other less exceptional years. Methods.We investigated the period from November 5, 2009, (MJD 55140) until July 3, 2010, (MJD 55380) with extensive coverage from very-high-energy (VHE;E > 100 GeV) gamma rays to radio with MAGIC, VERITAS,Fermi-LAT,RXTE,Swift, GASP-WEBT, VLBA, and a variety of additional optical and radio telescopes. We characterized the variability by deriving fractional variabilities as well as power spectral densities (PSDs). In addition, we investigated images of the jet taken with VLBA and the correlation behavior among different energy bands. Results.Mrk 421 was in widely different states of activity throughout the campaign, ranging from a low-emission state to its highest VHE flux ever recorded. We find the strongest variability in X-rays and VHE gamma rays, and PSDs compatible with power-law functions with indices around 1.5. We observe strong correlations between X-rays and VHE gamma rays at zero time lag with varying characteristics depending on the exact energy band. We also report a marginally significant (∼3σ) positive correlation between high-energy (HE;E > 100 MeV) gamma rays and the ultraviolet band. We detected marginally significant (∼3σ) correlations between the HE and VHE gamma rays, and between HE gamma rays and the X-ray, that disappear when the large flare in February 2010 is excluded from the correlation study, hence indicating the exceptionality of this flaring event in comparison with the rest of the campaign. The 2010 violent activity of Mrk 421 also yielded the first ejection of features in the VLBA images of the jet of Mrk 421. Yet the large uncertainties in the ejection times of these unprecedented radio features prevent us from firmly associating them to the specific flares recorded during the 2010 campaign. We also show that the collected multi-instrument data are consistent with a scenario where the emission is dominated by two regions, a compact and extended zone, which could be considered as a simplified implementation of an energy-stratified jet as suggested by recentIXPEobservations.more » « lessFree, publicly-accessible full text available February 1, 2026
-
ABSTRACT OT 081 is a well-known, luminous blazar that is remarkably variable in many energy bands. We present the first broadband study of the source, which includes very high energy (VHE, $$E\gt $$ 100 GeV) $$\gamma$$-ray data taken by the MAGIC (Major Atmospheric Gamma-ray Imaging Cherenkov telescopes) and H.E.S.S. (High Energy Stereoscopic System) imaging Cherenkov telescopes. The discovery of VHE $$\gamma$$-ray emission happened during a high state of $$\gamma$$-ray activity in July 2016, observed by many instruments from radio to VHE $$\gamma$$-rays. We identify four states of activity of the source, one of which includes VHE $$\gamma$$-ray emission. Variability in the VHE domain is found on daily time-scales. The intrinsic VHE spectrum can be described by a power law with index $$3.27\pm 0.44_{\rm stat}\pm 0.15_{\rm sys}$$ (MAGIC) and $$3.39\pm 0.58_{\rm stat}\pm 0.64_{\rm sys}$$ (H.E.S.S.) in the energy range of 55–300 and 120–500 GeV, respectively. The broadband emission cannot be successfully reproduced by a simple one-zone synchrotron self-Compton model. Instead, an additional external Compton component is required. We test a lepto-hadronic model that reproduces the data set well and a proton-synchrotron-dominated model that requires an extreme proton luminosity. Emission models that are able to successfully represent the data place the emitting region well outside of the broad-line region to a location at which the radiative environment is dominated by the infrared thermal radiation field of the dusty torus. In the scenario described by this flaring activity, the source appears to be a flat spectrum radio quasar (FSRQ), in contrast with past categorizations. This suggests that the source can be considered to be a transitional blazar, intermediate between BL Lac and FSRQ objects.more » « lessFree, publicly-accessible full text available May 15, 2026
-
The BL Lacertae object VER J0521+211 underwent a notable flaring episode in February 2020. A short-term monitoring campaign, led by the MAGIC (Major Atmospheric Gamma Imaging Cherenkov) collaboration, covering a wide energy range from radio to very high-energy (VHE, 100 GeV <E< 100 TeV) gamma rays was organised to study its evolution. These observations resulted in a consistent detection of the source over six consecutive nights in the VHE gamma-ray domain. Combining these nightly observations with an extensive set of multi-wavelength data made modelling of the blazar’s spectral energy distribution (SED) possible during the flare. This modelling was performed with a focus on two plausible emission mechanisms: (i) a leptonic two-zone synchrotron-self-Compton scenario, and (ii) a lepto-hadronic one-zone scenario. Both models effectively replicated the observed SED from radio to the VHE gamma-ray band. Furthermore, by introducing a set of evolving parameters, both models were successful in reproducing the evolution of the fluxes measured in different bands throughout the observing campaign. Notably, the lepto-hadronic model predicts enhanced photon and neutrino fluxes at ultra-high energies (E> 100 TeV). While the photon component, generated via decay of neutral pions, is not directly observable as it is subject to intense pair production (and therefore extinction) through interactions with the cosmic microwave background photons, neutrino detectors (e.g. IceCube) can probe the predicted neutrino component. Finally, the analysis of the gamma-ray spectra, observed by MAGIC and theFermi-LAT telescopes, yielded a conservative 95% confidence upper limit ofz ≤ 0.244 for the redshift of this blazar.more » « lessFree, publicly-accessible full text available February 1, 2026
An official website of the United States government
