skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mazo-Vargas, Anyi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Long noncoding RNAs (lncRNAs) are transcribed elements increasingly recognized for their roles in regulating gene expression. Thus far, however, we have little understanding of how lncRNAs contribute to evolution and adaptation. Here, we show that a conserved lncRNA,ivory, is an important color patterning gene in the buckeye butterflyJunonia coenia.ivoryoverlaps withcortex, a locus linked to multiple cases of crypsis and mimicry in Lepidoptera. Along with a companion paper by Livraghi et al., we argue thativory, notcortex, is the color pattern gene of interest at this locus. InJ. coenia, a cluster ofcis-regulatory elements (CREs) in the first intron ofivoryare genetically associated with natural variation in seasonal color pattern plasticity, and targeted deletions of these CREs phenocopy seasonal phenotypes. Deletions of differentivoryCREs produce other distinct phenotypes as well, including loss of melanic eyespot rings, and positive and negative changes in overall wing pigmentation. We show that the color pattern transcription factors Spineless, Bric-a-brac, and Ftz-f1 bind to theivorypromoter during wing pattern development, suggesting that they directly regulateivory. This case study demonstrates howcis-regulation of a single noncoding RNA can exert diverse and nuanced effects on the evolution and development of color patterns, including modulating seasonally plastic color patterns. 
    more » « less
  2. Evolutionary variation in the wing pigmentation of butterflies and moths offers striking examples of adaptation by crypsis and mimicry. Thecortexlocus has been independently mapped as the locus controlling color polymorphisms in 15 lepidopteran species, suggesting that it acts as a genomic hotspot for the diversification of wing patterns, but functional validation through protein-coding knockouts has proven difficult to obtain. Our study unveils the role of a long noncoding RNA (lncRNA) which we nameivory, transcribed from thecortexlocus, in modulating color patterning in butterflies. Strikingly,ivoryexpression prefigures most melanic patterns during pupal development, suggesting an early developmental role in specifying scale identity. To test this, we generated CRISPR mosaic knock-outs in five nymphalid butterfly species and show thativorymutagenesis yields transformations of dark pigmented scales into white or light-colored scales. Genotyping ofVanessa carduigermline mutants associates these phenotypes to small on-target deletions at the conserved first exon ofivory. In contrast,cortexgermline mutant butterflies with confirmed null alleles lack any wing phenotype and exclude a color patterning role for this adjacent gene. Overall, these results show that a lncRNA gene acts as a master switch of color pattern specification and played key roles in the adaptive diversification of wing patterns in butterflies. 
    more » « less
  3. Hoxgene clusters encode transcription factors that drive regional specialization during animal development: for example the Hox factor Ubx is expressed in the insect metathoracic (T3) wing appendages and differentiates them from T2 mesothoracic identities.Hoxtranscriptional regulation requires silencing activities that prevent spurious activation and regulatory crosstalks in the wrong tissues, but this has seldom been studied in insects other thanDrosophila, which shows a derivedHoxdislocation into two genomic clusters that disjoinedAntennapedia(Antp) andUltrabithorax(Ubx). Here, we investigated howUbxis restricted to the hindwing in butterflies, amidst a contiguousHoxcluster. By analysing Hi-C and ATAC-seq data in the butterflyJunonia coenia, we show that a Topologically Associated Domain (TAD) maintains a hindwing-enriched profile of chromatin opening aroundUbx. This TAD is bordered by a Boundary Element (BE) that separates it from a region of joined wing activity around theAntplocus. CRISPR mutational perturbation of this BE releases ectopicUbxexpression in forewings, inducing homeotic clones with hindwing identities. Further mutational interrogation of two non-coding RNA encoding regions and one putativecis-regulatory module within theUbxTAD cause rare homeotic transformations in both directions, indicating the presence of both activating and repressing chromatin features. We also describe a series of spontaneous forewing homeotic phenotypes obtained inHeliconiusbutterflies, and discuss their possible mutational basis. By leveraging the extensive wing specialization found in butterflies, our initial exploration ofUbxregulation demonstrates the existence of silencing and insulating sequences that prevent its spurious expression in forewings. 
    more » « less
  4. While piggyBac transposon-based transgenesis is widely used in various emerging model organisms, its relatively low transposition rate in butterflies and moths has hindered its use for routine genetic transformation in Lepidoptera. Here, we tested the suitability of a codon-optimized hyperactive piggyBac transposase ( hyPBase ) in mRNA form to deliver and integrate transgenic cassettes into the genome of the pantry moth Plodia interpunctella . Co-injection of hyPBase mRNA with donor plasmids successfully integrated 1.5–4.4 kb expression cassettes driving the fluorescent markers EGFP, DsRed, or EYFP in eyes and glia with the 3xP3 promoter. Somatic integration and expression of the transgene in the G 0 injected generation was detectable from 72-h embryos and onward in larvae, pupae and adults carrying a recessive white-eyed mutation. Overall, 2.5% of injected eggs survived into transgene-bearing adults with mosaic fluorescence. Subsequent outcrossing of fluorescent G 0 founders transmitted single-insertion copies of 3xP3::EGFP and 3xP3::EYFP and generated stable isogenic lines. Random in-crossing of a small cohort of G 0 founders expressing 3xP3::DsRed yielded a stable transgenic line segregating for more than one transgene insertion site. We discuss how hyPBase can be used to generate stable transgenic resources in Plodia and other moths. 
    more » « less
  5. Abstract Heliconius butterflies, a speciose genus of Müllerian mimics, represent a classic example of an adaptive radiation that includes a range of derived dietary, life history, physiological and neural traits. However, key lineages within the genus, and across the broader Heliconiini tribe, lack genomic resources, limiting our understanding of how adaptive and neutral processes shaped genome evolution during their radiation. Here, we generate highly contiguous genome assemblies for nine Heliconiini, 29 additional reference-assembled genomes, and improve 10 existing assemblies. Altogether, we provide a dataset of annotated genomes for a total of 63 species, including 58 species within the Heliconiini tribe. We use this extensive dataset to generate a robust and dated heliconiine phylogeny, describe major patterns of introgression, explore the evolution of genome architecture, and the genomic basis of key innovations in this enigmatic group, including an assessment of the evolution of putative regulatory regions at the Heliconius stem. Our work illustrates how the increased resolution provided by such dense genomic sampling improves our power to generate and test gene-phenotype hypotheses, and precisely characterize how genomes evolve. 
    more » « less
  6. Ancient multifunctional regulatory elements underlie the evolution of butterfly wing color patterns. 
    more » « less
  7. Butterfly color patterns provide visible and biodiverse phenotypic readouts of the patterning processes. While the secreted ligand WntA was shown to instruct the color pattern formation in butterflies, its mode of reception remains elusive. Butterfly genomes encode four homologues of the Frizzled-family of Wnt receptors. Here we show that CRISPR mosaic knock-outs of frizzled2 (fz2) phenocopy the color pattern effects of WntA loss-of-function in multiple nymphalids. While WntA mosaic clones result in intermediate patterns of reduced size, fz2 clones are cell-autonomous, consistent with a morphogen function. Shifts in expression of WntA and fz2 in WntA crispant pupae show that they are under positive and negative feedback, respectively. Fz1 is required for Wnt-independent planar cell polarity (PCP) in the wing epithelium. Fz3 and Fz4 show phenotypes consistent with Wnt competitive-antagonist functions in vein formation (Fz3 and Fz4), wing margin specification (Fz3), and color patterning in the Discalis and Marginal Band Systems (Fz4). Overall, these data show that the WntA/Frizzled2 morphogen-receptor pair forms a signaling axis that instructs butterfly color patterning, and shed light on the functional diversity of insect Frizzled receptors. 
    more » « less
  8. null (Ed.)
    Developmental plasticity allows genomes to encode multiple distinct phenotypes that can be differentially manifested in response to environmental cues. Alternative plastic phenotypes can be selected through a process called genetic assimilation, although the mechanisms are still poorly understood. We assimilated a seasonal wing color phenotype in a naturally plastic population of butterflies ( Junonia coenia ) and characterized three responsible genes. Endocrine assays and chromatin accessibility and conformation analyses showed that the transition of wing coloration from an environmentally determined trait to a predominantly genetic trait occurred through selection for regulatory alleles of downstream wing-patterning genes. This mode of genetic evolution is likely favored by selection because it allows tissue- and trait-specific tuning of reaction norms without affecting core cue detection or transduction mechanisms. 
    more » « less
  9. Color pattern mimicry in Heliconius butterflies is a classic case study of complex trait adaptation via selection on a few large effect genes. Association studies have linked color pattern variation to a handful of noncoding regions, yet the presumptive cis-regulatory elements (CREs) that control color patterning remain unknown. Here we combine chromatin assays, DNA sequence associations, and genome editing to functionally characterize 5 cis-regulatory elements of the color pattern gene optix . We were surprised to find that the cis-regulatory architecture of optix is characterized by pleiotropy and regulatory fragility, where deletion of individual cis-regulatory elements has broad effects on both color pattern and wing vein development. Remarkably, we found orthologous cis-regulatory elements associate with wing pattern convergence of distantly related comimics, suggesting that parallel coevolution of ancestral elements facilitated pattern mimicry. Our results support a model of color pattern evolution in Heliconius where changes to ancient, multifunctional cis-regulatory elements underlie adaptive radiation. 
    more » « less