skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Mazzucchelli, Chiara"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Theoretical models predict thatz≳ 6 quasars are hosted in the most massive halos of the underlying dark matter distribution and thus would be immersed in protoclusters of galaxies. However, observations report inconclusive results. We investigate the 1.1 proper-Mpc2environment of thez= 7.54 luminous quasar ULAS J1342+0928. We search for Lyman-break galaxy (LBG) candidates using deep imaging from the Hubble Space Telescope (HST) in the Advanced Camera for Surveys (ACS)/F814W, Wide Field Camera 3 (WFC3)/F105W/F125W bands, and Spitzer/Infrared Array Camera at 3.6 and 4.5μm. We report azphot=7.690.23+0.33LBG with magF125W= 26.41 at 223 projected proper kpc (pkpc) from the quasar. We find no HST counterpart to one [Cii] emitter previously found with the Atacama Large millimeter/submillimeter Array (ALMA) at 27 projected pkpc andz[C II]=7.5341 ± 0.0009 (Venemans et al. 2020). We estimate the completeness of our LBG candidates using results from Cosmic Assembly Near-Infrared Deep Extragalactic Legacy Survey/GOODS deep blank field searches sharing a similar filter setup. We find that >50% of thez∼ 7.5 Lyman-break galaxies (LBGs) with magF125W> 25.5 are missed due to the absence of a filter redward of the Lyman break in F105W, hindering the UV color accuracy of the candidates. We conduct a QSO-LBG clustering analysis revealing a low LBG excess of0.460.08+1.52in this quasar field, consistent with an average or low-density field. Consequently, this result does not present strong evidence of an LBG overdensity around ULAS J1342+0928. Furthermore, we identify two LBG candidates with azphotmatching a confirmedz= 6.84 absorber along the line of sight to the quasar. All these galaxy candidates are excellent targets for follow-up observations with JWST and/or ALMA to confirm their redshift and physical properties.

     
    more » « less
    Free, publicly-accessible full text available May 1, 2025
  2. ABSTRACT

    We present the high-z quasar candidate archive (HzQCA), summarizing the spectroscopic observations of 207 z ≳ 5 quasar candidates using Keck/LRIS, Keck/MOSFIRE, and Keck/NIRES. We identify 14 candidates as z ∼ 6 quasars, with 10 of them newly reported here and 63 candidates as brown dwarfs. In the remaining sources, 79 candidates are unlikely to be quasars; 2 sources are inconclusive; the others could not be fully reduced or extracted. Based on the classifications, we investigate the distributions of quasars and contaminants in colour space with photometry measurements from DELS (z), VIKING/UKIDSS (YJHKs/YJHK), and unWISE (W1W2). We find that the identified brown dwarfs are consistent with the empirical brown dwarf model that is commonly used in quasar candidate selection methods. To refine spectroscopic confirmation strategies, we simulate synthetic spectroscopy of high-z quasars and contaminants for all three instruments. The simulations utilize the spectroscopic data in HzQCA. We predict the required exposure times for quasar confirmation and propose an optimal strategy for spectroscopic follow-up observations. For instance, we demonstrate that we can identify a mJ = 21.5 at z = 7.6 or a mJ = 23.0 at z = 7.0 within 15 min of exposure time with LRIS. With the publication of the HzQCA, we aim to provide guidance for future quasar surveys and candidate classification.

     
    more » « less
    Free, publicly-accessible full text available January 23, 2025
  3. Abstract

    The variations in Lyαforest opacity observed atz> 5.3 between lines of sight to different background quasars are too strong to be caused by fluctuations in the density field alone. The leading hypothesis for the cause of this excess variance is a late, ongoing reionization process at redshifts below six. Another model proposes strong ionizing background fluctuations coupled to a short, spatially varying mean free path of ionizing photons, without explicitly invoking incomplete reionization. With recent observations suggesting a short mean free path atz∼ 6, and a dramatic improvement inz> 5 Lyαforest data quality, we revisit this latter possibility. Here, we apply the likelihood-free inference technique of approximate Bayesian computation (ABC) to jointly constrain the hydrogen photoionization rate ΓHIand the mean free path of ionizing photonsλmfpfrom the effective optical depth distributions atz= 5.0–6.1 from XQR-30. We find that the observations are well-described by fluctuating mean free path models with average mean free paths that are consistent with the steep trend implied by independent measurements atz∼ 5–6, with a concomitant rapid evolution of the photoionization rate.

     
    more » « less
    Free, publicly-accessible full text available April 1, 2025
  4. Abstract

    The [Cii] 158μm emission line and the underlying far-infrared (FIR) dust continuum are important tracers for studying star formation and kinematic properties of early galaxies. We present a survey of the [Cii] emission lines and FIR continua of 31 luminous quasars atz> 6.5 using the Atacama Large Millimeter Array (ALMA) and the NOrthern Extended Millimeter Array at sub-arcsec resolution. This survey more than doubles the number of quasars with [Cii] and FIR observations at these redshifts and enables statistical studies of quasar host galaxies deep into the epoch of reionization. We detect [Cii] emission in 27 quasar hosts with a luminosity range ofL[CII]= (0.3–5.5) × 109Land detect the FIR continuum of 28 quasar hosts with a luminosity range ofLFIR= (0.5–13.0) × 1012L. BothL[CII]andLFIRare correlated (ρ≃ 0.4) with the quasar bolometric luminosity, albeit with substantial scatter. The quasar hosts detected by ALMA are clearly resolved with a median diameter of ∼5 kpc. About 40% of the quasar host galaxies show a velocity gradient in [Cii] emission, while the rest show either dispersion-dominated or disturbed kinematics. Basic estimates of the dynamical masses of the rotation-dominated host galaxies yieldMdyn= (0.1–7.5) × 1011M. Considering our findings alongside those of literature studies, we found that the ratio betweenMBHandMdynis about 10 times higher than that of localMBHMdynrelation on average but with substantial scatter (the ratio difference ranging from ∼0.6 to 60) and large uncertainties.

     
    more » « less
  5. We present JWST/NIRSpec integral field data of the quasar PJ308-21 atz = 6.2342. As shown by previous ALMA and HST imaging, the quasar has two companion sources, interacting with the quasar host galaxy. The high-resolution G395H/290LP NIRSpec spectrum covers the 2.87 − 5.27 μm wavelength range and shows the rest-frame optical emission of the quasar with exquisite quality (signal-to-noise ratio ∼100 − 400 per spectral element). Based on the Hβline from the broad line region, we obtain an estimate of the black hole massMBH, Hβ ∼ 2.7 × 109M. This value is within a factor ≲1.5 of the Hα-based black hole mass from the same spectrum (MBH, Hα ∼ 1.93 × 109M) and is consistent with a previous estimate relying on the Mg IIλ2799 line (MBH, MgII ∼ 2.65 × 109M). All theseMBHestimates are within the ∼0.5 dex intrinsic scatter of the adopted mass calibrations. The high Eddington ratio of PJ308-21λEdd, Hβ ∼ 0.67 (λEdd, Hα ∼ 0.96) is in line with the overall quasar population atz ≳ 6. The relative strengths of the [O III], Fe II, and Hβlines are consistent with the empirical “Eigenvector 1” correlations as observed for low redshift quasars. We find evidence for blueshifted [O III]λ5007 emission with a velocity offset Δv[O III] = −1922 ± 39 km s−1from the systemic velocity and a full width at half maximum (FWHM)FWHM([O III]) = 2776−74+75km s−1. This may be the signature of outflowing gas from the nuclear region, despite the true values of Δv[O III]andFWHM([O III]) likely being more uncertain due to the blending with Hβand Fe IIlines. Our study demonstrates the unique capabilities of NIRSpec in capturing quasar spectra at cosmic dawn and studying their properties in unprecedented detail.

     
    more » « less
    Free, publicly-accessible full text available May 1, 2025
  6. Abstract

    The formation of the first supermassive black holes is expected to have occurred in some most pronounced matter and galaxy overdensities in the early universe. We have conducted a submillimeter wavelength continuum survey of 54z∼ 6 quasars using the Submillimeter Common-User Bolometre Array-2 on the James Clerk Maxwell Telescope to study the environments aroundz∼ 6 quasars. We identified 170 submillimeter galaxies (SMGs) with above 3.5σdetections in 450 or 850μm maps. Their far-IR luminosities are (2.2–6.4) × 1012L, and their star formation rates are ∼400–1200Myr−1. We also calculated the SMGs’ differential and cumulative number counts in a combined area of ∼620 arcmin2. To a 4σdetection (at ∼5.5 mJy), SMGs’ overdensity is0.680.19+0.21(±0.19), exceeding the blank-field source counts by a factor of 1.68. We find that 13/54 quasars show overdensities (at ∼5.5 mJy) ofδSMG∼ 1.5–5.4. The combined area of these 13 quasars exceeds the blank-field counts with the overdensity to 5.5 mJy ofδSMG2.460.55+0.64(±0.25) in the regions of ∼150 arcmin2. However, the excess is insignificant on the bright end (e.g., 7.5 mJy). We also compare results with previous environmental studies of Lyαemitters and Lyman break galaxies on a similar scale. Our survey presents the first systematic study of the environment of quasars atz∼ 6. The newly discovered SMGs provide essential candidates for follow-up spectroscopic observations to test whether they reside in the same large-scale structures as the quasars and search for protoclusters at an early epoch.

     
    more » « less
  7. Abstract

    Protoclusters, the progenitors of galaxy clusters, trace large scale structures in the early Universe and are important to our understanding of structure formation and galaxy evolution. To date, only a handful of protoclusters have been identified in the Epoch of Reionization. As one of the rarest populations in the early Universe, distant quasars that host active supermassive black holes are thought to reside in the most massive dark matter halos at that cosmic epoch and could thus potentially pinpoint some of the earliest protoclusters. In this Letter, we report the discovery of a massive protocluster around a luminous quasar atz= 6.63. This protocluster is anchored by the quasar and includes three [Cii] emitters atz∼ 6.63, 12 spectroscopically confirmed Lyαemitters (LAEs) at 6.54 <z≤ 6.64, and a large number of narrow-band-imaging selected LAE candidates at the same redshift. This structure has an overall overdensity ofδ=3.30.9+1.1within ∼35 × 74 cMpc2on the sky and an extreme overdensity ofδ> 30 in its central region (i.e.,R≲ 2 cMpc). We estimate that this protocluster will collapse into a galaxy cluster with a mass of6.91.4+1.2×1015Mat the current epoch, more massive than the most massive clusters known in the local Universe such as Coma. In the quasar vicinity, we discover a double-peaked LAE, which implies that the quasar has a UV lifetime greater than 0.8 Myrs and has already ionized its surrounding intergalactic medium.

     
    more » « less
  8. Abstract Luminous quasars are powerful targets to investigate the role of feedback from supermassive black holes (BHs) in regulating the growth phases of BHs themselves and of their host galaxies, up to the highest redshifts. Here we investigate the cosmic evolution of the occurrence and kinematics of BH-driven outflows, as traced by broad absorption line (BAL) features, due to the C iv ionic transition. We exploit a sample of 1935 quasars at z = 2.1–6.6 with bolometric luminosity log( L bol /erg s −1 ) ≳ 46.5, drawn from the Sloan Digital Sky Survey and from the X-Shooter legacy survey of Quasars at the Reionization Epoch (XQR-30). We consider rest-frame optical bright quasars to minimize observational biases due to quasar selection criteria. We apply a homogeneous BAL-identification analysis, based on employing composite template spectra to estimate the quasar intrinsic emission. We find a BAL quasar fraction close to 20% at z ∼ 2–4, while it increases to almost 50% at z ∼ 6. The velocity and width of the BAL features also increase at z ≳ 4.5. We exclude the possibility that the redshift evolution of the BAL properties is due to differences in terms of quasar luminosity and accretion rate. These results suggest significant BH feedback occurring in the 1 Gyr old universe, likely affecting the growth of BHs and, possibly, of their host galaxies, as supported by models of early BH and galaxy evolution. 
    more » « less
  9. Abstract

    We present thez≈ 6 type-1 quasar luminosity function (QLF), based on the Pan-STARRS1 (PS1) quasar survey. The PS1 sample includes 125 quasars atz≈ 5.7–6.2, with −28 ≲M1450≲ −25. With the addition of 48 fainter quasars from the SHELLQs survey, we evaluate thez≈ 6 QLF over −28 ≲M1450≲ −22. Adopting a double power law with an exponential evolution of the quasar density (Φ(z) ∝ 10k(z−6);k= −0.7), we use a maximum likelihood method to model our data. We find a break magnitude ofM*=26.380.60+0.79mag, a faint-end slope ofα=1.700.19+0.29, and a steep bright-end slope ofβ=3.841.21+0.63. Based on our new QLF model, we determine the quasar comoving spatial density atz≈ 6 to ben(M1450<26)=1.160.12+0.13cGpc3. In comparison with the literature, we find the quasar density to evolve with a constant value ofk≈ −0.7, fromz≈ 7 toz≈ 4. Additionally, we derive an ionizing emissivity ofϵ912(z=6)=7.231.02+1.65×1022ergs1Hz1cMpc3, based on the QLF measurement. Given standard assumptions, and the recent measurement of the mean free path by Becker et al. atz≈ 6, we calculate an Hiphotoionizing rate of ΓH I(z= 6) ≈ 6 × 10−16s−1, strongly disfavoring a dominant role of quasars in hydrogen reionization.

     
    more » « less
  10. ABSTRACT

    Proximity zones of high-redshift quasars are unique probes of their central supermassive black holes as well as the intergalactic medium (IGM) in the last stages of reionization. We present 22 new measurements of proximity zones of quasars with redshifts between 5.8 and 6.6, using the enlarged XQR-30 sample of high-resolution, high-SNR quasar spectra. The quasars in our sample have ultraviolet magnitudes of M1450 ∼ −27 and black hole masses of 109–1010 M⊙. Our inferred proximity zone sizes are 2–7 physical Mpc, with a typical uncertainty of less than 0.5 physical Mpc, which, for the first time, also includes uncertainty in the quasar continuum. We find that the correlation between proximity zone sizes and the quasar redshift, luminosity, or black hole mass, indicates a large diversity of quasar lifetimes. Two of our proximity zone sizes are exceptionally small. The spectrum of one of these quasars, with z  = 6.02, displays, unusually for this redshift, damping wing absorption without any detectable metal lines, which could potentially originate from the IGM. The other quasar has a high-ionization absorber ∼0.5 pMpc from the edge of the proximity zone. This work increases the number of proximity zone measurements available in the last stages of cosmic reionization to 87. This data will lead to better constraints on quasar lifetimes and obscuration fractions at high redshift, that in turn will help probe the seed mass and formation redshift of supermassive black holes.

     
    more » « less