skip to main content


Search for: All records

Creators/Authors contains: "McCarl, Bruce"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Climate change undeniably impacts agriculture and natural resources, enterprises and markets. For informed decision making, there is a need for information on climate change adaptation possibilities and mitigation alternatives. Mathematical programming has been used to address the economic aspects of such questions and allows analysis as climate change moves the environment into previously unobserved conditions. It allows us to model spatial and dynamic features of the issue and analyze heretofore unobserved adaptation and mitigation possibilities. This review provides an overview of and references for modeling techniques, conceptual issues, and major assumptions involved with using mathematical programming as a climate change economic analyzing engine, along with a brief comparison with other methods. We also review a number of studies applying mathematical programming to examine climate change impacts, adaptation, and mitigation issues in the agricultural and natural resources arena. Finally, we present a very brief discussion on research needs. Expected final online publication date for the Annual Review of Resource Economics, Volume 15 is October 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates. 
    more » « less
  2. Abstract

    Climate change is triggering regional-scale alterations in vegetation including land cover change such as forest die-off. At sufficient magnitudes, land cover change from forest die-off in one region can change not only local climate but also vegetation including agriculture elsewhere via changes in larger scale climate patterns, termed an ‘ecoclimate teleconnection’. Ecoclimate teleconnections can therefore have impacts on vegetative growth in distant regions, but the degrees to which the impact decays with distance or directionally diffuses relative to the initial perturbation are general properties that have not been evaluated. We used the Community Earth system model to study this, examining the implications of tree die-off in 14 major US forested regions. For each case we evaluated the ecological impact across North America as a function of distance and direction from the location of regional tree die-off. We found that the effects on gross primary productivity (GPP) generally decayed linearly with distance, with notable exceptions. Distance from the region of tree die-off alone explained up to ∼30% of the variance in many regions. We also found that the GPP impact was not uniform across directions and that including an additional term to account for direction to regional land cover change from tree die-off was statistically significant for nearly all regions and explained up to ∼40% of the variance in many regions, comparable in magnitude to the influence of El Nino on GPP in the Western US. Our results provide novel insights into the generality of distance decay and directional diffusion of ecoclimate teleconnections, and suggest that it may be hard to identify expected impacts of tree die-off without case-specific simulations. Such patterns of distance decay, directional diffusion, and their exceptions are relevant for cross-regional policy that links forests and other agriculture (e.g. US Department of Agriculture).

     
    more » « less
  3. Globally, the climate is changing, and this has implications for livestock. Climate affects livestock growth rates, milk and egg production, reproductive performance, morbidity, and mortality, along with feed supply. Simultaneously, livestock is a climate change driver, generating 14.5% of total anthropogenic Greenhouse Gas (GHG) emissions. Herein, we review the literature addressing climate change and livestock, covering impacts, emissions, adaptation possibilities, and mitigation strategies. While the existing literature principally focuses on ruminants, we extended the scope to include non-ruminants. We found that livestock are affected by climate change and do enhance climate change through emissions but that there are adaptation and mitigation actions that can limit the effects of climate change. We also suggest some research directions and especially find the need for work in developing country settings. In the context of climate change, adaptation measures are pivotal to sustaining the growing demand for livestock products, but often their relevance depends on local conditions. Furthermore, mitigation is key to limiting the future extent of climate change and there are a number of possible strategies. 
    more » « less
  4. Abstract

    In the United States, thermal power plant electrical generators (EGs) are large water diverters and consumptive users who need water for cooling. Retrofitting existing cooling systems to dry cooling and building new facilities with dry cooling can save water and reduce EG's vulnerability to drought. However, this can be an expensive source of water. We estimate that the cost of water saved by retrofitting cooling in existing EGs ranges from $0.04/m3to $18/m3depending on facility characteristics. Also water savings from building new EGs with dry cooling ranges in cost per unit water from $1.29/m3to $2.24/m3. We compare costs with that for water development projects identified in the Texas State Water Plan. We find the water cost from converting to dry cooling is lower than many of the water development possibilities. We then estimate the impact of climate change on the cost of water saved, finding climate change can increase EG water use by up to 9.3% and lower the costs of water saved. Generally, it appears that water planners might consider cooling alterations as a cost competitive water development alternative whose cost would be further decreased by climate change.

     
    more » « less