Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Razeghi, Manijeh ; Khodaparast, Giti A. ; Vitiello, Miriam S. (Ed.)Band structure, strain, and polarization engineering of nitride heterostructures open unparalleled opportunities for quantum sensing in the infrared. Intersubband absorption and photoluminescence are employed to correlate structure with optical properties of nonpolar strain-balanced InGaN/AlGaN nanostructures grown by molecular-beam epitaxy. Mid-infrared intersubband transitions in m-plane (In)AlxGa1-xN/In0.16Ga0.84N (0.19x0.3) multi-quantum wells were observed for the first time in the range of 3.4-5.1 μm (244-360 meV). Direct and attenuated total-reflection infrared absorption measurements are interpreted using structural information revealed by high-resolution x-ray diffraction and transmission electron microanalysis. The experimental intersubband energies are better reproduced by calculations using the local-density approximation than the Hartree-Fock approximation for the exchange-correlation correction. The effect of charge density, quantum well width, and barrier alloy composition on the intersubband transition energy was examined to evaluate the potential of this material for practical infrared applications. Temperature-dependent continuous-wave and time-resolved photoluminescence (TRPL) measurements are also investigated to probe carrier localization and recombination in m-plane InGaN/AlGaN quantum wells. Average localization depths of 21 meV and 40 meV were estimated for the undoped and doped structures, respectively. Using TRPL, dual localization centers were identified in undoped structures, while a single type of localization centers was found in doped structures. At 2 K, a fast decay time of approximately 0.3ns was measured for both undoped and doped structures, while a longer decay time of 2.2 ns was found only for the undoped sample. TRPL in magnetic field was explored to examine the effect of doping sheets on carrier dynamics.more » « less
-
Temperature-dependent continuous-excitation and time-resolved photoluminescence are studied to probe carrier localization and recombination in nearly strain-balanced m-plane In0.09Ga0.91N/Al0.19Ga0.81N multi-quantum wells grown by plasma-assisted molecular-beam epitaxy. An average localization depth of 21 meV is estimated for the undoped sample. This depth is much smaller than the reported values in polar structures and m-plane InGaN quantum wells. As part of this study, temperature and magnetic field dependence of time-resolved photoluminescence is performed. At 2 K, an initial fast decay time of 0.3 ns is measured for both undoped and doped structures. The undoped sample also exhibits a slow decay component with a time scale of 2.2 ns. The existence of two relaxation paths in the undoped structure can be attributed to different localization centers. The fast relaxation decays are relatively insensitive to external magnetic fields, while the slower relaxation time constant decreases significantly with increasing magnetic fields. The fast decay time scale in the undoped sample is likely due to indium fluctuations in the quantum well. The slow decay time may be related to carrier localization in the barriers. The addition of doping leads to a single fast decay time likely due to stronger exciton localization in the InGaN quantum wells.more » « less
-
Abstract A comprehensive study of the exciton fine structure (EFS) is presented in 2D‐phenethylammonium lead iodide films using magnetic field‐induced polarization of photoluminescence (PL) in both Faraday and Voigt configurations at fields up to 25 Tesla. Three exciton bands are identified in the PL spectrum associated with bound, dark, and bright excitons, respectively. Under a high magnetic field in Faraday/Voigt configuration, large field‐induced circular/linear polarization is observed in the PL band related to the dark exciton, which is magnetically activated. Furthermore, it is found that the dark exciton has an anomalous field‐induced circular polarization, which cannot be explained by the classical Boltzmann distribution of spin‐polarized species. These findings are well explained by an effective mass model that includes exchange terms unique to the monoclinic symmetry as a perturbation of the EFS in the approximate tetragonal symmetry. It is also confirmed that the field‐induced linear polarization is sensitive to the monoclinic exchange term, whereas the field‐induced circular polarization is immune to such term.
-
The Metal-Insulator phase transition (MIT) is one of the most interesting phenomena to study particularly in two-dimensional transition-metal dichalcogendes (TMDCs). A few recent studies1,2 have indicated a possible MIT on MoS2 and ReS2, but the nature of the MIT is still enigmatic due to the interplay between charge carriers and disorder in 2D systems. We will present a potential MIT in few-layered MoSe2 FETs based on four-terminal conductivity measurements. Conductivities measured in multiple samples strongly demonstrate the insulating-to-metallic-like phase transition when the charge carrier density increased above a critical threshold. The nature of the phase transition will be discussed with an existing theoretical model. 1B. H. Moon et al, Nat Commun. 2018; 9: 2052. 2N. R. Pradhan et al, Nano Lett. 2015, 15, 12, 8377 *This work was performed, in part, at the Center for Nanoscale Materials, a U.S. Department of Energy Office of Science User Facility, and supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357. This work is also supported by NSF-DMR #1826886 and # 1900692. A portion of this work was performed at the NHMFL, which is supported by the NSF Cooperative Agreement No. DMR-1644779 and the State of Floridamore » « less
-
We report intrinsic photoconductivity studies on one of the least examined layered compounds, ZrS2.Few-atomic layer ZrS2 field-effect transistors were fabricated on the Si/SiO2 substrate and photoconductivity measurements were performed using both two- and four-terminal configurations under the illumination of 532 nm laser source. We measured photocurrent as a function of the incident optical power at several source-drain (bias) voltages. We observe a significantly large photoconductivity when measured in the multiterminal (four-terminal) configuration compared to that in the two-terminal configuration. For an incident optical power of 90 nW, the estimated photosensitivity and the external quantum efficiency (EQE) measured in two-terminal configuration are 0.5 A/W and 120%, respectively, under a bias voltage of 650 mV. Under the same conditions, the four-terminal measurements result in much higher values for both the photoresponsivity (R) and EQE to 6 A/W and 1400%, respectively. This significant improvement in photoresponsivity and EQE in the four-terminal configuration may have been influenced by the reduction of contact resistance at the metal-semiconductor interface, which greatly impacts the carrier mobility of low conducting materials. This suggests that photoconductivity measurements performed through the two-terminal configuration in previous studies on ZrS2 and other 2D materials have severely underestimated the true intrinsic properties of transition metal dichalcogenides and their remarkable potential for optoelectronic applications.more » « less