Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Fossil groundwaters make up a substantial fraction of the Earth's fresh water and are being targeted for water supply wells at increasing rates. These groundwaters were recharged more than 12,000 years ago, often in climate conditions that were much different from those of today. Because of the long renewal times involved, fossil groundwaters have often been classified as nonrenewable. However, groundwater ages provide little insight into how water levels and fluxes will change as the result of pumping. The relationship between groundwater ages and these outcome-based metrics of renewability is not straightforward. Therefore, whether a groundwater is fossil or not may have little to do with its renewability. The hydraulic response of an aquifer system to pumping is not strongly related to groundwater age. The use of both modern and fossil groundwater can be unsustainable.more » « lessFree, publicly-accessible full text available May 28, 2026
-
Free, publicly-accessible full text available April 1, 2026
-
Recent advances in marine electromagnetic surveys have allowed geophysicists to interpret and map offshore freshwater resources with unprecedented resolution and to test inferences regarding onshore-offshore hydrologic connections. To date, however, little is known about the timing or isotopic composition of this unconventional water resource. Here, we reconstructed the Pleistocene hydrogeology of the U.S. Atlantic continental shelf using a cross-sectional paleo-hydrogeologic model to explore possible mechanisms and timing of freshwater emplacement offshore Martha’s Vineyard, Massachusetts. We considered two scenarios in which the Laurentide ice sheet extended different distances offshore, and a third scenario without any ice sheet. The hydrostratigraphic framework was constructed by integrating borehole lithology data, seismic data, and formation resistivity data. Model results were compared to formation resistivity data as well as borehole salinity, groundwater residence time, and stable isotope profiles. Neither of the ice-sheet scenarios provided a significantly better fit to the onshore isotopic and offshore salinity observations than the third scenario. All three model scenarios predicted freshwater emplacement within Tertiary and Cretaceous units. Pleistocene deposits were largely devoid of freshened groundwater. Simulated groundwater residence times for the midshelf region ranged between 104 and 106 yr at depths of <500 m. Simulated groundwater ages from wells completed within Pleistocene confined aquifers are consistent with measured groundwater ages within confined aquifers of Martha’s Vineyard and Nantucket Island (2750−5900 yr). Analysis of onshore 3H/3He dating data indicates that some wells contain a mixture of old and modern (<60 yr) groundwater. Calculated fossil groundwater in the midshelf region that included ice-sheet loading retained relatively low δ18O values, consistent with glacial meltwater recharge. Model results suggest that much of the freshwater emplacement occurred within the last glacial cycle and that the island and offshore hydrogeologic systems appear to be connected.more » « lessFree, publicly-accessible full text available March 30, 2026
-
Abstract While it has been known for some time that reducing fluids have bleached red beds adjacent to fault zones and regionally across the Colorado Plateau, the volumes of fluids expelled along faults have never been quantified. We have developed and applied a suite of one-dimensional hydrologic models to test the hypothesis that internally generated, reducing fluids migrated up sub-basin bounding faults across the Paradox Basin and bleached overlying red beds. The internal fluid driving mechanisms included are mechanical compaction, petroleum and natural gas generation, aquathermal expansion of water, and clay dewatering. The model was calibrated using pressure, temperature, porosity, permeability, and vitrinite reflectance data. Model results indicate that sediment compaction was the most important pressure generation mechanism, producing the majority of internal fluids sourced during basin evolution. Peak fluid migration occurred during the Pennsylvanian–Permian (325–300 Ma) and Cretaceous (95–65 Ma) periods, the latter being concurrent with simulated peak oil/gas generation (87–74 Ma), which likely played a role in the bleaching of red beds. Batch geochemical advection models and mass balance calculations were utilized to estimate the volume of bleaching in an idealized reservoir having a thickness (~100 m) and porosity (0.2) corresponding to bleached reservoirs observed in the Paradox Basin. Bleaching volume calculations show that internal fluid driving mechanisms were likely responsible for fault-related alteration observed within the Wingate, Morrison, and Navajo Formations in four localities across the Paradox Basin in the Colorado Plateau, Utah and Colorado, USA. The volume calculation required that 33%–55% of the total basinal fluids, composed of hydrogen-sulfide and paleo-seawater, migrated into an overlying red bed reservoir (0.5 wt% Fe2O3).more » « lessFree, publicly-accessible full text available January 30, 2026
-
White, Timothy; Provenzale, Antonello (Ed.)Free, publicly-accessible full text available November 28, 2025
-
Abstract Groundwater is one of the largest reservoirs of water on Earth but has relatively small fluxes compared to its volume. This behavior is exaggerated at depths below 500 m, where the majority of groundwater exists and where residence times of millions to even a billion years have been documented. However, the extent of interactions between deep groundwater (>500 m) and the rest of the terrestrial water cycle at a global scale are unclear because of challenges in detecting their contributions to streamflow. Here, we use a chloride mass balance approach to quantify the contribution of deep groundwater to global streamflow. Deep groundwater likely contributes <0.1% to global streamflow and is only weakly and sporadically connected to the rest of the water cycle on geological timescales. Despite this weak connection to streamflow, we found that deep groundwaters are important to the global chloride cycle, providing ~7% of the flux of chloride to the ocean.more » « less
-
Current understanding of the dynamic and slow flow paths that support streamflow in mountain headwater catchments is inhibited by the lack of long-term hydrogeochemical data and the frequent use of short residence time age tracers. To address this, the current study combined the traditional mean transit time and the state-of-the-art fraction of young water ( F yw ) metrics with stable water isotopes and tritium tracers to characterize the dynamic and slow flow paths at Marshall Gulch, a sub-humid headwater catchment in the Santa Catalina Mountains, Arizona, USA. The results show that F yw varied significantly with period when using sinusoidal curve fitting methods (e.g., iteratively re-weighted least squares or IRLS), but not when using the transit time distribution (TTD)-based method. Therefore, F yw estimates from TTD-based methods may be particularly useful for intercomparison of dynamic flow behavior between catchments. However, the utility of 3 H to determine F yw in deeper groundwater was limited due to both data quality and inconsistent seasonal cyclicity of the precipitation 3 H time series data. Although a Gamma-type TTD was appropriate to characterize deep groundwater, there were large uncertainties in the estimated Gamma TTD shape parameter arising from the short record length of 3 H in deep groundwater. This work demonstrates how co-application of multiple metrics and tracers can yield a more complete understanding of the dynamic and slow flow paths and observable deep groundwater storage volumes that contribute to streamflow in mountain headwater catchments.more » « less
An official website of the United States government
