The first generations of stars left their chemical fingerprints on metal-poor stars in the Milky Way and its surrounding dwarf galaxies. While instantaneous and homogeneous enrichment implies that groups of conatal stars should have the same element abundances, small amplitudes of abundance scatter are seen at fixed [Fe/H]. Measurements of intrinsic abundance scatter have been made with small high-resolution spectroscopic data sets where measurement uncertainty is small compared to this scatter. In this work, we present a method to use mid-resolution survey data, which have larger errors, to make this measurement. Using APOGEE Data Release 17, we calculate the intrinsic scatter of Al, O, Mg, Si, Ti, Ni, and Mn relative to Fe for 333 metal-poor stars across six classical dwarf galaxies around the Milky Way, and 1604 stars across 19 globular clusters (GCs). We calibrate the reported abundance errors in bins of signal-to-noise ratio and [Fe/H] using a high-fidelity halo data set. Applying these calibrated errors to the APOGEE data, we find small amplitudes of average intrinsic abundance scatter in dwarf galaxies ranging from 0.03 to 0.09 dex, with a median value of 0.047 dex. For the GCs, we find intrinsic scatters ranging from 0.01 to 0.11 dex, with particularly high scatter for Al and O. Our measurements of intrinsic abundance scatter place important upper bounds, which are limited by our calibration, on the intrinsic scatter in these systems, as well as constraints on their underlying star formation history and mixing that we can look to simulations to interpret.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
Abstract The interaction between supermassive black hole (SMBH) feedback and the circumgalactic medium (CGM) continues to be an open question in galaxy evolution. In our study, we use smoothed particle hydrodynamics simulations to explore the impact of SMBH feedback on galactic metal retention and the motion of metals and gas into and through the CGM of L*galaxies. We examine 140 galaxies from the 25 Mpc cosmological volume
Romulus25 , with stellar masses between log(M */M ⊙) = 9.5–11.5. We measure the fraction of metals remaining in the interstellar medium (ISM) and CGM of each galaxy and calculate the expected mass of each SMBH based on theM BH–σ relation (Kormendy & Ho 2013). The deviation of each SMBH from its expected mass, ΔM BH, is compared to the potential of its host viaσ . We find that SMBHs with accreted mass aboveM BH–σ are more effective at removing metals from the ISM than undermassive SMBHs in star-forming galaxies. Overall, overmassive SMBHs suppress the total star formation of their host galaxies and more effectively move metals from the ISM into the CGM. However, we see little to no evacuation of gas from the CGM out of their halos, in contrast with other simulations. Finally, we predict that Civ column densities in the CGM of L*galaxies are unlikely to depend on host galaxy SMBH mass. Our results show that the scatter in the low-mass end of theM BH–σ relation may indicate how effective an SMBH is in the local redistribution of mass in its host galaxy.Free, publicly-accessible full text available May 22, 2025 -
The interaction between supermassive black hole (SMBH) feedback and the circumgalactic medium (CGM) continues to be an open question in galaxy evolution. In our study, we use SPH simulations to explore the impact of SMBH feedback on galactic metal retention and the motion of metals and gas into and through the CGM of L ∗ galaxies. We examine 140 galaxies from the 25 Mpc cosmological volume, Romulus25, with stellar masses between 3 × 10 9 - 3 × 10 11 M ⊙ . We measure the fraction of metals remaining in the ISM and CGM of each galaxy, and calculate the expected mass of its SMBH based on the M−σ relation. The deviation of each SMBH from its expected mass, ΔMBH is compared to the potential of its host via σ . We find that SMBHs with accreted mass above the empirical M−σ relation are about 15\% more effective at removing metals from the ISM than under-massive SMBHs in star forming galaxies. Over-massive SMBHs suppress the overall star formation of their host galaxies and more effectively move metals from the ISM into the CGM. However, we see little evidence for the evacuation of gas from their halos, in contrast with other simulations. Finally, we predict that C IV column densities in the CGM of L ∗ galaxies may depend on host galaxy SMBH mass. Our results show that the scatter in the low mass end of M−σ relation may indicate how effective a SMBH is at the local redistribution of mass in its host galaxy.more » « less