skip to main content


Search for: All records

Creators/Authors contains: "Melis, Carl"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    There is a wealth of evidence to suggest that planetary systems can survive beyond the main sequence. Most commonly, white dwarfs are found to be accreting material from tidally disrupted asteroids, whose bulk compositions are reflected by the metals polluting the stellar photospheres. While many examples are known, most lack the deep, high-resolution data required to detect multiple elements, and thus characterize the planetesimals that orbit them. Here, spectra of seven DZ white dwarfs observed with Keck High Resolution Echelle Spectrometer (HIRES) are analysed, where up to nine metals are measured per star. Their compositions are compared against those of Solar system objects, working in a Bayesian framework to infer or marginalize over the accretion history. All of the stars have been accreting primitive material, similar to chondrites, with hints of a Mercury-like composition at one star. The most polluted star is observed several Myr after its last major accretion episode, in which a Moon-sized object met its demise.

     
    more » « less
    Free, publicly-accessible full text available October 10, 2024
  2. ABSTRACT

    We present an analysis of spectroscopic data of the cool, highly magnetic, and polluted white dwarf 2MASS J0916−4215. The atmosphere of the white dwarf is dominated by hydrogen, but numerous spectral lines of magnesium, calcium, titanium, chromium, iron, and strontium, along with Li i, Na i, Al i, and K i lines, are found in the incomplete Paschen–Back regime, most visibly, in the case of Ca ii lines. Extensive new calculations of the Paschen–Back effect in several spectral lines are presented and results of the calculations are tabulated for the Ca ii H&K doublet. The abundance pattern shows a large lithium and strontium excess, which may be viewed as a signature of planetary debris akin to Earth’s continental crust accreted on to the star, although the scarcity of silicon indicates possible dilution in bulk Earth material. Accurate abundance measurements proved sensitive to the value of the broadening parameter due to collisions with neutral hydrogen ($\Gamma$H i), particularly in saturated lines such as the resonance lines of Ca i and Ca ii. We found that $\Gamma$H i if formulated with values from the literature could be overestimated by a factor of 10 in most resonance lines.

     
    more » « less
  3. ABSTRACT

    Two recently discovered white dwarfs, WD J041246.84 + 754942.26 and WD J165335.21 − 100116.33, exhibit Hα and Hβ Balmer line emission similar to stars in the emerging DAHe class, yet intriguingly have not been found to have detectable magnetic fields. These white dwarfs are assigned the spectral type DAe. We present detailed follow-up of the two known DAe stars using new time-domain spectroscopic observations and analysis of the latest photometric time-series data from TESS and ZTF. We measure the upper magnetic field strength limit of both stars as B < 0.05 MG. The DAe white dwarfs exhibit photometric and spectroscopic variability, where in the case of WD J041246.84 + 754942.26 the strength of the Hα and Hβ emission cores varies in antiphase with its photometric variability over the spin period, which is the same phase relationship seen in DAHe stars. The DAe white dwarfs closely cluster in one region of the Gaia Hertzsprung–Russell diagram together with the DAHe stars. We discuss current theories on non-magnetic and magnetic mechanisms which could explain the characteristics observed in DAe white dwarfs, but additional data are required to unambiguously determine the origin of these stars.

     
    more » « less
    Free, publicly-accessible full text available July 29, 2024
  4. Abstract

    We present observations and analyses of eight white dwarf stars (WDs) that have accreted rocky material from their surrounding planetary systems. The spectra of these helium-atmosphere WDs contain detectable optical lines of all four major rock-forming elements (O, Mg, Si, and Fe). This work increases the sample of oxygen-bearing WDs with parent body composition analyses by roughly 33%. To first order, the parent bodies that have been accreted by the eight WDs are similar to those of chondritic meteorites in relative elemental abundances and oxidation states. Seventy-five percent of the WDs in this study have observed oxygen excesses implying volatiles in the parent bodies with abundances similar to those of chondritic meteorites. Three WDs have oxidation states that imply more reduced material than found in CI chondrites, indicating the possible detection of Mercury-like parent bodies, but are less constrained. These results contribute to the recurring conclusion that extrasolar rocky bodies closely resemble those in our solar system, and do not, as a whole, yield unusual or unique compositions.

     
    more » « less
    Free, publicly-accessible full text available June 1, 2024
  5. Abstract

    Ultraviolet and optical spectra of the hydrogen-dominated atmosphere white dwarf star G238-44 obtained with FUSE, Keck/HIRES, HST/COS, and HST/STIS reveal 10 elements heavier than helium: C, N, O, Mg, Al, Si, P, S, Ca, and Fe. G238-44 is only the third white dwarf with nitrogen detected in its atmosphere from polluting planetary system material. Keck/HIRES data taken on 11 nights over 24 yr show no evidence for variation in the equivalent width of measured absorption lines, suggesting stable and continuous accretion from a circumstellar reservoir. From measured abundances and limits on other elements, we find an anomalous abundance pattern and evidence for the presence of metallic iron. If the pollution is from a single parent body, then it would have no known counterpart within the solar system. If we allow for two distinct parent bodies, then we can reproduce the observed abundances with a mix of iron-rich Mercury-like material and an analog of an icy Kuiper Belt object with a respective mass ratio of 1.7:1. Such compositionally disparate objects would provide chemical evidence for both rocky and icy bodies in an exoplanetary system and would be indicative of a planetary system so strongly perturbed that G238-44 is able to capture both asteroid and Kuiper Belt–analog bodies near-simultaneously within its <100 Myr cooling age.

     
    more » « less
  6. Abstract

    Polluted white dwarfs (WDs) offer a unique way to study the bulk compositions of exoplanetary material, but it is not always clear if this material originates from comets, asteroids, moons, or planets. We combineN-body simulations with an analytical model to assess the prevalence of extrasolar moons as WD polluters. Using a sample of observed polluted WDs, we find that the extrapolated parent body masses of the polluters are often more consistent with those of many solar system moons, rather than solar-like asteroids. We provide a framework for estimating the fraction of WDs currently undergoing observable moon accretion based on results from simulated WD planetary and moon systems. Focusing on a three-planet WD system of super-Earth to Neptune-mass bodies, we find that we could expect about one percent of such systems to be currently undergoing moon accretions as opposed to asteroid accretion.

     
    more » « less
  7. null (Ed.)
    ABSTRACT WD 0145+234 is a white dwarf that is accreting metals from a circumstellar disc of planetary material. It has exhibited a substantial and sustained increase in 3–5 $\mu$m flux since 2018. Follow-up Spitzer photometry reveals that emission from the disc had begun to decrease by late 2019. Stochastic brightening events superimposed on the decline in brightness suggest the liberation of dust during collisional evolution of the circumstellar solids. A simple model is used to show that the observations are indeed consistent with ongoing collisions. Rare emission lines from circumstellar gas have been detected at this system, supporting the emerging picture of white dwarf debris discs as sites of collisional gas and dust production. 
    more » « less
  8. null (Ed.)
  9. null (Ed.)
    ABSTRACT Planets and stars ultimately form out of the collapse of the same cloud of gas. Whilst planets, and planetary bodies, readily loose volatiles, a common hypothesis is that they retain the same refractory composition as their host star. This is true within the Solar system. The refractory composition of chondritic meteorites, Earth, and other rocky planetary bodies are consistent with solar, within the observational errors. This work aims to investigate whether this hypothesis holds for exoplanetary systems. If true, the internal structure of observed rocky exoplanets can be better constrained using their host star abundances. In this paper, we analyse the abundances of the K-dwarf, G200-40, and compare them to its polluted white dwarf companion, WD 1425+540. The white dwarf has accreted planetary material, most probably a Kuiper belt-like object, from an outer planetary system surviving the star’s evolution to the white dwarf phase. Given that binary pairs are chemically homogeneous, we use the binary companion, G200-40, as a proxy for the composition of the progenitor to WD 1425+540. We show that the elemental abundances of the companion star and the planetary material accreted by WD 1425+540 are consistent with the hypothesis that planet and host-stars have the same true abundances, taking into account the observational errors. 
    more » « less
  10. null (Ed.)