skip to main content

Search for: All records

Creators/Authors contains: "Mellinger, Corbyn"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Electrical modulation of magnetic states in single-phase multiferroic materials, using domain-wall magnetoelectric (ME) coupling, can be enhanced substantially by controlling the population density of the ferroelectric (FE) domain walls during polarization switching. In this work, we investigate the domain-wall ME coupling in multiferroic h-YbFeO3thin films, in which the FE domain walls induce clamped antiferromagnetic (AFM) domain walls with reduced magnetization magnitude. Simulation according to the phenomenological theory indicates that the domain-wall ME effect is dramatically enhanced when the separation between the FE domain walls shrinks below the characteristic width of the clamped AFM domain walls during the ferroelectric switching. Experimentally, we show that while the magnetization magnitude remains same for both the positive and the negative saturation polarization states, there is evidence of magnetization reduction at the coercive voltages. These results suggest that the domain-wall ME effect is viable for electrical control of magnetization.

  2. The ferrimagnetic inverse spinel NiCo 2 O 4 has attracted extensive research interest for its versatile electrochemical properties, robust magnetic order, high conductivity, and fast spin dynamics, as well as its highly tunable nature due to the closely coupled charge, spin, orbital, lattice, and defect effects. Single-crystalline epitaxial thin films of NiCo 2 O 4 present a model system for elucidating the intrinsic physical properties and strong tunability, which are not viable in bulk single crystals. In this Perspective, we discuss the recent advances in epitaxial NiCo 2 O 4 thin films, focusing on understanding its unusual magnetic and transport properties in light of crystal structure and electronic structure. The perpendicular magnetic anisotropy in compressively strained NiCo 2 O 4 films is explained by considering the strong spin–lattice coupling, particularly on Co ions. The prominent effect of growth conditions reveals the complex interplay between the crystal structure, cation stoichiometry, valence state, and site occupancy. NiCo 2 O 4 thin films also exhibit various magnetotransport anomalies, including linear magnetoresistance and sign change in anomalous Hall effect, which illustrate the competing effects of band-intrinsic Berry phase and impurity scattering. The fundamental understanding of these phenomena will facilitate the functional design of NiComore »2 O 4 thin films for nanoscale spintronic applications.« less
    Free, publicly-accessible full text available July 14, 2023
  3. The X-ray-induced spin crossover transition of an Fe (II) molecular thin film in the presence and absence of a magnetic field has been investigated. The thermal activation energy barrier in the soft X-ray activation of the spin crossover transition for [Fe{H2B(pz)2}2(bipy)] molecular thin films is reduced in the presence of an applied magnetic field, as measured through X-ray absorption spectroscopy at various temperatures. The influence of a 1.8 T magnetic field is sufficient to cause deviations from the expected exponential spin state transition behavior which is measured in the field free case. We find that orbital moment diminishes with increasing temperature, relative to the spin moment in the vicinity of room temperature.