skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Domain-wall magnetoelectric coupling in multiferroic hexagonal YbFeO3 films
Abstract Electrical modulation of magnetic states in single-phase multiferroic materials, using domain-wall magnetoelectric (ME) coupling, can be enhanced substantially by controlling the population density of the ferroelectric (FE) domain walls during polarization switching. In this work, we investigate the domain-wall ME coupling in multiferroic h-YbFeO3thin films, in which the FE domain walls induce clamped antiferromagnetic (AFM) domain walls with reduced magnetization magnitude. Simulation according to the phenomenological theory indicates that the domain-wall ME effect is dramatically enhanced when the separation between the FE domain walls shrinks below the characteristic width of the clamped AFM domain walls during the ferroelectric switching. Experimentally, we show that while the magnetization magnitude remains same for both the positive and the negative saturation polarization states, there is evidence of magnetization reduction at the coercive voltages. These results suggest that the domain-wall ME effect is viable for electrical control of magnetization.  more » « less
Award ID(s):
1806147
PAR ID:
10394312
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
13
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A domain wall‐enabled memristor is created, in thin film lithium niobate capacitors, which shows up to twelve orders of magnitude variation in resistance. Such dramatic changes are caused by the injection of strongly inclined conducting ferroelectric domain walls, which provide conduits for current flow between electrodes. Varying the magnitude of the applied electric‐field pulse, used to induce switching, alters the extent to which polarization reversal occurs; this systematically changes the density of the injected conducting domain walls in the ferroelectric layer and hence the resistivity of the capacitor structure as a whole. Hundreds of distinct conductance states can be produced, with current maxima achieved around the coercive voltage, where domain wall density is greatest, and minima associated with the almost fully switched ferroelectric (few domain walls). Significantly, this “domain wall memristor” demonstrates a plasticity effect: when a succession of voltage pulses of constant magnitude is applied, the resistance changes. Resistance plasticity opens the way for the domain wall memristor to be considered for artificial synapse applications in neuromorphic circuits. 
    more » « less
  2. Abstract The switching characteristics of ferroelectrics and multiferroics are influenced by the interaction of topological defects with domain walls. We report on the pinning of polarization due to antiphase boundaries in thin films of the multiferroic hexagonal YbFeO3. We have directly resolved the atomic structure of a sharp antiphase boundary (APB) in YbFeO3thin films using a combination of aberration-corrected scanning transmission electron microscopy (STEM) and total energy calculations based on density-functional theory (DFT). We find the presence of a layer of FeO6octahedra at the APB that bridges the adjacent domains. STEM imaging shows a reversal in the direction of polarization on moving across the APB, which DFT calculations confirm is structural in nature as the polarization reversal reduces the distortion of the FeO6octahedral layer at the APB. Such APBs in hexagonal perovskites are expected to serve as domain-wall pinning sites and hinder ferroelectric switching of the domains. 
    more » « less
  3. Abstract Electric‐field‐controlled magnetism is of importance in realizing energy efficient, dense and fast information storage and processing. Strain‐mediated converse magneto‐electric (ME) coupling between ferromagnetic and ferroelectric heterostructure shows promise for realizing electric‐controlled magnetism at room temperature and is attracting a number of recent investigations. However, such ME‐effect studies have mainly focus on magnetic metals. In this work, high quality yttrium iron garnet (Y3Fe5O12(YIG)) films are deposited directly onto (100)‐oriented single‐crystal Pb (Mg1/3Nb2/3)0.7Ti0.3O3(PMN‐PT) substrates by means of magnetron sputtering. The electric‐field‐induced polarization switching and lattice strain in the PMN‐PT substrate results in two distinct magnetization states in the YIG film that are nonvolatile and electrically reversible. Because of the direct contact between the YIG and the PMN‐PT substrate, an efficient ME coupling and an almost 90° rotation of the easy axis of the YIG film can be realized. Furthermore, the electric‐field‐controlled hysteresis loop‐like ferromagnetic resonance field shifts and spin pumping signals are observed in Pt/YIG/PMN‐PT heterostructures. Thus, the obstacle is overcome via growing high‐quality YIG thin films directly onto PMN‐PT substrates and an efficient manipulation of magnetism and pure spin current transport by electric field is thereby realized. These findings are instructive for future low‐power magnetic insulator‐based spintronic devices. 
    more » « less
  4. Abstract Ferroelectrics are being increasingly called upon for electronic devices in extreme environments. Device performance and energy efficiency is highly correlated to clock frequency, operational voltage, and resistive loss. To increase performance it is common to engineer ferroelectric domain structure with highly‐correlated electrical and elastic coupling that elicit fast and efficient collective switching. Designing domain structures with advantageous properties is difficult because the mechanisms involved in collective switching are poorly understood and difficult to investigate. Collective switching is a hierarchical process where the nano‐ and mesoscale responses control the macroscopic properties. Using chemical solution synthesis, epitaxially nearly‐relaxed (100) BaTiO3films are synthesized. Thermal strain induces a strongly‐correlated domain structure with alternating domains of polarization along the [010] and [001] in‐plane axes and 90° domain walls along the [011] or [01] directions. Simultaneous capacitance–voltage measurements and band‐excitation piezoresponse force microscopy revealed strong collective switching behavior. Using a deep convolutional autoencoder, hierarchical switching is automatically tracked and the switching pathway is identified. The collective switching velocities are calculated to be ≈500 cm s−1at 5 V (7 kV cm−1), orders‐of‐magnitude faster than expected. These combinations of properties are promising for high‐speed tunable dielectrics and low‐voltage ferroelectric memories and logic. 
    more » « less
  5. Abstract Utilizing the unique in‐plane/out‐of‐plane polarization coupling in ferroelectric van der Waals α‐In2Se3, ferroelectric‐polarization‐controlled electrical conductance modulation in two‐dimensional (2D) MoS2with a large dynamic range of over 5 orders of magnitude and excellent non‐volatility is demonstrated. This highly efficient control of the electrical conductance is facilitated by enhanced capacitive coupling through atomic‐layer‐deposition‐grown Al2O3as the dielectric medium. By varying the in‐plane poling bias to the ferroelectric α‐In2Se3, the electrical conductance of vertically stacked 2D MoS2can be tuned continuously. This approach enables simplified device design and provides great flexibility in device integrations, and it can be applied in principle to manipulate the electronic states in any 2D semiconductors for various applications such as transistors, tunneling devices, and reconfigurable electronics. The results also provide insight into the ferroelectric polarization screening by ambient chemical species, highlighting the need for surface passivation, and/or device encapsulations. 
    more » « less