Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Conventional lubricants face significant challenges in electric vehicle (EV) systems due to their low electrical conductivity and inability to mitigate tribo-electrification effects which can result in increased friction, wear, and electrical discharge damage under external electrification. Consequently, conductive lubricants like ionic liquids (ILs) have emerged as promising alternatives, offering enhanced compatibility with EV applications. This study investigated the tribological behavior of four phosphonium-based room temperature ionic liquids (PRTILs) with trihexyltetradecyl phosphonium [P6,6,6,14] or tributyltetradecyl phosphonium [P4,4,4,14] cations and saccharinate [Sacc] or benzoate [Benz] anions under electrified conditions, targeting potential EV applications. Physicochemical properties, including viscosity and ionic conductivity, were measured using a viscometer and a conductivity meter, while tribological properties were evaluated using an electrified mini-traction machine and an electrified rotary ball-on-disk setup. The results revealed that all the PRTILs exhibited superior tribological (friction and wear) performance than mineral oil with or without electrification. PRTILs with the [Sacc] anion feature a double aromatic ring structure, while those with the [Benz] anion feature a single aromatic ring structure. Under low electrification (10 mA), [P6,6,6,14][Sacc] outperformed [Benz]-based PRTILs, showing a lower coefficient of friction and wear due to their higher viscosity and lower ionic conductivity. Additionally, [P6,6,6,14][Sacc] showed a power loss lower than [P4,4,4,14][Sacc] but higher than [Benz]-based PRTILs under tribo-electrification. The addition of graphene nanoplatelets (GNPs) reduced the power loss of [P6,6,6,14][Sacc] by 24% by reducing the electric contact resistance. Overall, double-ring aromatic [P6,6,6,14][Sacc] demonstrated superior tribological performance, and GNP additives enhanced their power efficiency, offering a promising pathway for IL-based lubricant development for electrified conditions.more » « lessFree, publicly-accessible full text available September 1, 2026
-
his study examined six phosphonium-based room-temperature ionic liquids (PRTILs) having trihexyltetradecyl- or tributyltetradecyl-phosphonium cations with saccharinate, salicylate, or benzoate anions, and obtained a feature parameter to correlate their cationic chain length, anionic ring size, and contact angle with tribological properties. PRTILs with trihexyltetradecyl-phosphonium cations had lower coefficient of friction (COF) and wear than PRTILs with tributyltetradecyl- phosphonium cations, a trend attributed to the additional methylene groups providing lower contact angle. For either cation, PRTILs with the saccharinate anion exhibited much lower COF and wear than single-ring anions, due to the formation of a low-shear-strength-tribofilm facilitated by the double-ring structure and sulfur of saccharinate. Overall, this study revealed PRTIL interfacial mechanisms that can be used to identify anion-cation combinations with optimal tribological performance.more » « lessFree, publicly-accessible full text available February 1, 2026
-
The role of ionic liquid additives in enhancing the tribological performance of plastic-derived oilsFree, publicly-accessible full text available November 1, 2025
-
Cold spray additive manufacturing (CSAM) has gained significant attention for its rapid solid deposition capabilities. However, the presence of defects such as pores and voids limits its performance, particularly in electrochemical environments. In this study, a novel post-surface treatment, plasma electrolytic oxidation (PEO), was applied and investigated as a feasible solution to overcome these defects. Results demonstrated a successful PEO deposition on cold-sprayed 316L stainless steel (SS) due to the rapid formation and discharge of aluminate electrolytes along the surface. However, due to the severely strained and highly crystalline surface, the electric field that allows for the deposition of Al(OH)42 anions was reduced. As consequence, an uneven and rough deposition took place. Nonetheless, a successful Al2O3 film of 12.30 lm thickness was formed. Experimental tests were further conducted in simulated aqueous and biologicalbased solutions to test the electrochemical resistance of the deposit. Results reveal a noticeable enhancement in corrosion resistance for both solutions. This enhancement can be attributed to the ‘‘postponing’’ and ‘‘blocking’’ effect enabled by the Al2O3 film, which prevented the electrolyte solution from penetrating the CS surface. Collectively, these findings suggest that PEO is indeed a promising technique to mitigate the chemical degradation of CSAM’d 316L SS.more » « less