skip to main content

Search for: All records

Creators/Authors contains: "Miao, Leixin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Nonlinear Hall effect (NLHE) is a new type of Hall effect with wide application prospects. Practical device applications require strong NLHE at room temperature (RT). However, previously reported NLHEs are all low-temperature phenomena except for the surface NLHE of TaIrTe 4 . Bulk RT NLHE is highly desired due to its ability to generate large photocurrent. Here, we show the spin-valley locked Dirac state in BaMnSb 2 can generate a strong bulk NLHE at RT. In the microscale devices, we observe the typical signature of an intrinsic NLHE, i.e. the transverse Hall voltage quadratically scales with the longitudinal current as the current is applied to the Berry curvature dipole direction. Furthermore, we also demonstrate our nonlinear Hall device’s functionality in wireless microwave detection and frequency doubling. These findings broaden the coupled spin and valley physics from 2D systems into a 3D system and lay a foundation for exploring bulk NLHE’s applications.
    Free, publicly-accessible full text available December 1, 2024
  2. Free, publicly-accessible full text available March 1, 2024
  3. Free, publicly-accessible full text available August 1, 2023
  4. Abstract

    The layered perovskite Ca3Mn2O7(CMO) is a hybrid improper ferroelectric candidate proposed for room temperature multiferroicity, which also displays negative thermal expansion behavior due to a competition between coexisting polar and nonpolar phases. However, little is known about the atomic-scale structure of the polar/nonpolar phase coexistence or the underlying physics of its formation and transition. In this work, we report the direct observation of double bilayer polar nanoregions (db-PNRs) in Ca2.9Sr0.1Mn2O7using aberration-corrected scanning transmission electron microscopy (S/TEM). In-situ TEM heating experiments show that the db-PNRs can exist up to 650 °C. Electron energy loss spectroscopy (EELS) studies coupled with first-principles calculations demonstrate that the stabilization mechanism of the db-PNRs is directly related to an Mn oxidation state change (from 4+ to 2+), which is linked to the presence of Mn antisite defects. These findings open the door to manipulating phase coexistence and achieving exotic properties in hybrid improper ferroelectric.

  5. Atomistic simulation techniques have become an indispensable tool to acquire a fundamental understanding of growth and structural characteristics of two-dimensional (2D) materials of interest, thereby accelerating experimental research in the same field. A new ReaxFF reactive force field presented here is the first comprehensive empirical potential that is explicitly designed to capture the most prominent features of 2D WSe2 solid-phase chemistry, such as defect formation as a function of local geometry and chalcogen chemical potential, vacancy migration and phase transition, thus enabling cost-effective and reliable characterization of 2D WSe2 at large length scales and time scales much longer than what is accessible by first-principles theory. This potential, validated using extensive first-principles energetics data on both periodic and nonperiodic systems and experimental measurements, can accurately describe the mechanochemical coupling between monolayer deformations and vacancy energetics, providing valuable atomistic insights into the morphological evolution of a monolayer in different environments in terms of loading conditions and various concentrations and distributions of defects. Since understanding how growth is affected by the local chemical environment is vital to fabricating efficient and functional atomically thin 2D WSe2, the new ReaxFF description enables investigations of edge-controlled growth of single crystals of 2D WSe2 using reactive environmentsmore »closely matching experimental conditions at a low computational cost.« less
  6. Defects have a profound impact on the electronic and physical properties of crystals. For two-dimensional (2D) materials, many intrinsic point defects have been reported, but much remains to be understood about their origin. Using scanning transmission electron microscopy imaging, this study discovers various linear arrays of W-vacancy defects that are explained in the context of the crystal growth of coalesced, monolayer WS2. Atomistic-scale simulations show that vacancy arrays can result from steric hindrance of bulky gas-phase precursors at narrowly separated growth edges, and that increasing the edge separation leads to various intact and defective growth modes, which are driven by competition between the catalytic effects of the sapphire substrate and neighboring growth edge. Therefore, we hypothesize that the arrays result from combined growth modes, which directly result from film coalescence. The connections drawn here will guide future synthetic and processing strategies to harness the engineering potential of defects in 2D monolayers.