Understanding human mobility patterns amid natural hazards is crucial for enhancing urban emergency responses and rescue operations. Existing research on human mobility has delineated two primary types of individuals: returners, who exhibit a tendency to frequent a limited number of locations, and explorers, characterized by a more diverse range of movement across various places. Yet, whether this mobility dichotomy endures in the context of natural hazards remains underexplored. This study addresses this gap by examining anonymized high-resolution mobile phone location data from Lee County, Florida residents, aiming to unravel the dynamics of these distinct mobility groups throughout different phases of Hurricane Ian. The results indicate that returners and explorers maintained their distinct mobility characteristics even during the hurricane, showing increased separability. Before the hurricane, returners favored shorter trips, while explorers embarked on longer journeys, a trend that continued during the hurricane. However, the hurricane heightened people’s inclination to explore, leading to a notable increase in longer-distance travel for both groups, likely influenced by evacuation considerations. Spatially, both groups exhibited an uptick in trips towards the southern regions, away from the hurricane’s path, particularly converging on major destinations such as Miami, Fort Lauderdale, Naples, and West Palm Beach during the hurricane.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
We consider the problem of constructing asymptotically valid confidence intervals for the change point in a high-dimensional covariance shift setting. A novel estimator for the change point parameter is developed, and its asymptotic distribution under high dimen- sional scaling obtained. We establish that the proposed estimator exhibits a sharp Op(ψ−2) rate of convergence, wherein ψ represents the jump size between model parameters before and after the change point. Further, the form of the asymptotic distributions under both a vanishing and a non-vanishing regime of the jump size are characterized. In the former case, it corresponds to the argmax of an asymmetric Brownian motion, while in the latter case to the argmax of an asymmetric random walk. We then obtain the relationship be- tween these distributions, which allows construction of regime (vanishing vs non-vanishing) adaptive confidence intervals. Easy to implement algorithms for the proposed methodology are developed and their performance illustrated on synthetic and real data sets.more » « less
-
Many real time series datasets exhibit structural changes over time. A popular model for capturing their temporal dependence is that of vector autoregressions (VAR), which can accommodate structural changes through time evolving transition matrices. The problem then becomes to both estimate the (unknown) number of structural break points, together with the VAR model parameters. An additional challenge emerges in the presence of very large datasets, namely on how to accomplish these two objectives in a computational efficient manner. In this article, we propose a novel procedure which leverages a block segmentation scheme (BSS) that reduces the number of model parameters to be estimated through a regularized least-square criterion. Specifically, BSS examines appropriately defined blocks of the available data, which when combined with a fused lasso-based estimation criterion, leads to significant computational gains without compromising on the statistical accuracy in identifying the number and location of the structural breaks. This procedure is further coupled with new local and exhaustive search steps to consistently estimate the number and relative location of the break points. The procedure is scalable to big high-dimensional time series datasets with a computational complexity that can achieve O(n), where n is the length of the time series (sample size), compared to an exhaustive procedure that requires steps. Extensive numerical work on synthetic data supports the theoretical findings and illustrates the attractive properties of the procedure. Finally, an application to a neuroscience dataset exhibits its usefulness in applications. Supplementary files for this article are available online.more » « less