skip to main content

Search for: All records

Creators/Authors contains: "Milisavljevic, Danny"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present a population of 19 radio-luminous supernovae (SNe) with emission reaching L ν ∼ 10 26 –10 29 erg s −1 Hz −1 in the first epoch of the Very Large Array Sky Survey (VLASS) at 2–4 GHz. Our sample includes one long gamma-ray burst, SN 2017iuk/GRB 171205A, and 18 core-collapse SNe detected at ≈1–60 yr after explosion. No thermonuclear explosion shows evidence for bright radio emission, and hydrogen-poor progenitors dominate the subsample of core-collapse events with spectroscopic classification at the time of explosion (79%). We interpret these findings in the context of the expected radio emission from the forward shock interaction with the circumstellar medium (CSM). We conclude that these observations require a departure from the single wind–like density profile (i.e., ρ CSM ∝ r −2 ) that is expected around massive stars and/or from a spherical Newtonian shock. Viable alternatives include the shock interaction with a detached, dense shell of CSM formed by a large effective progenitor mass-loss rate, M ̇ ∼ 10 − 4 – 10 − 1 M ⊙ yr −1 (for an assumed wind velocity of 1000 km s −1 ); emission from an off-axis relativistic jet entering our line of sight; ormore »the emergence of emission from a newly born pulsar-wind nebula. The relativistic SN 2012ap that is detected 5.7 and 8.5 yr after explosion with L ν ∼ 10 28 erg s −1 Hz −1 might constitute the first detections of an off-axis jet+cocoon system in a massive star. However, none of the VLASS SNe with archival data points are consistent with our model off-axis jet light curves. Future multiwavelength observations will distinguish among these scenarios. Our VLASS source catalogs, which were used to perform the VLASS cross-matching, are publicly available at https://doi.org/10.5281/zenodo.4895112 .« less
  2. ABSTRACT We report on new Very Long Baseline Interferometry radio measurements of supernova (SN) 2014C in the spiral galaxy NGC 7331, made with the European VLBI Network ∼5 yr after the explosion, as well as on flux density measurements made with the Jansky Very Large Array (VLA). SN 2014C was an unusual SN, initially of Type Ib, but over the course of ∼1 yr, it developed strong H α lines, implying the onset of strong interaction with some H-rich circumstellar medium (CSM). The expanding shock-front interacted with a dense shell of circumstellar material during the first year, but has now emerged from the dense shell and is expanding into the lower density CSM beyond. Our new VLBI observations show a relatively clear shell structure and continued expansion with some deceleration, with a suggestion that the deceleration is increasing at the latest times. Our multifrequency VLA observations show a relatively flat power-law spectrum with Sν ∝ ν−0.56 ± 0.03, and show no decline in the radio luminosity since t ∼ 1 yr.
  3. Free, publicly-accessible full text available July 27, 2023
  4. Whether supernovae are a significant source of dust has been a long-standing debate. The large quantities of dust observed in high-redshift galaxies raise a fundamental question as to the origin of dust in the Universe since stars cannot have evolved to the AGB dust-producing phase in high-redshift galaxies. In contrast, supernovae occur within several millions of years after the onset of star formation. This white paper focuses on dust formation in supernova ejecta with US-Extremely Large Telescope (ELT) perspective during the era of JWST and LSST.