skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Miller, Michael"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 14, 2026
  2. Free, publicly-accessible full text available March 1, 2026
  3. In dusty plasma environments, spontaneous growth of nanoparticles from reactive gases has been extensively studied for over three decades, primarily focusing on hydrocarbons and silicate particles. Here, we introduce the growth of titanium dioxide, a wide bandgap semiconductor, as dusty plasma nanoparticles. The resultant particles exhibited a spherical morphology and reached a maximum monodisperse radius of 235 ± 20 nm after growing for 70 s. The particle grew linearly, and the growth displayed a cyclic behavior; that is, upon reaching their maximum radius, the largest particles fell out of the plasma, and the next growth cycle immediately followed. The particles were collected after being grown for different amounts of time and imaged using scanning electron microscopy. Further characterization was carried out using energy dispersive x-ray spectroscopy, x-ray diffraction, and Raman spectroscopy to elucidate the chemical composition and crystalline properties of the maximally sized particles. Initially, the as-grown particles exhibited an amorphous structure after 70 s. However, annealing treatments at temperatures of 400 and 800 °C induced crystallization, yielding anatase and rutile phases, respectively. Annealing at 600 °C resulted in a mixed phase of anatase and rutile. These findings open avenues for a rapid and controlled growth of titanium dioxide via dusty plasma. 
    more » « less
  4. Abstract This paper explicates a solution to building correspondences between molecular-scale transcriptomics and tissue-scale atlases. This problem arises in atlas construction and cross-specimen/technology alignment where specimens per emerging technology remain sparse and conventional image representations cannot efficiently model the high dimensions from subcellular detection of thousands of genes. We address these challenges by representing spatial transcriptomics data as generalized functions encoding position and high-dimensional feature (gene, cell type) identity. We map onto low-dimensional atlas ontologies by modeling regions as homogeneous random fields with unknown transcriptomic feature distribution. We solve simultaneously for the minimizing geodesic diffeomorphism of coordinates through LDDMM and for these latent feature densities. We map tissue-scale mouse brain atlases to gene-based and cell-based transcriptomics data from MERFISH and BARseq technologies and to histopathology and cross-species atlases to illustrate integration of diverse molecular and cellular datasets into a single coordinate system as a means of comparison and further atlas construction. 
    more » « less
  5. Abstract Spatial transcriptomics (ST) technologies enable high throughput gene expression characterization within thin tissue sections. However, comparing spatial observations across sections, samples, and technologies remains challenging. To address this challenge, we develop STalign to align ST datasets in a manner that accounts for partially matched tissue sections and other local non-linear distortions using diffeomorphic metric mapping. We apply STalign to align ST datasets within and across technologies as well as to align ST datasets to a 3D common coordinate framework. We show that STalign achieves high gene expression and cell-type correspondence across matched spatial locations that is significantly improved over landmark-based affine alignments. Applying STalign to align ST datasets of the mouse brain to the 3D common coordinate framework from the Allen Brain Atlas, we highlight how STalign can be used to lift over brain region annotations and enable the interrogation of compositional heterogeneity across anatomical structures. STalign is available as an open-source Python toolkit athttps://github.com/JEFworks-Lab/STalignand as Supplementary Software with additional documentation and tutorials available athttps://jef.works/STalign. 
    more » « less
  6. In this paper we propose a novel neurostimulation protocol that provides an intervention-based assessment to distinguish the contributions of different motor control networks in the cortico-spinal system. Specifically, we use a combination of non-invasive brain stimulation and neuromuscular stimulation to probe neuromuscular system behavior with targeted impulse-response system identification. In this protocol, we use an in-house developed human-machine interface (HMI) for an isotonic wrist movement task, where the user controls a cursor on-screen. During the task, we generate unique motor evoked potentials based on triggered cortical or spinal level perturbations. Externally applied brain-level perturbations are triggered through TMS to cause wrist flexion/extension during the volitional task. The resultant contraction output and related reflex responses are measured by the HMI. These movements also include neuromodulation in the excitability of the brain-muscle pathway via transcranial direct current stimulation. Colloquially, spinal-level perturbations are triggered through skin-surface neuromuscular stimulation of the wrist muscles. The resultant brain-muscle and spinal-muscle pathways perturbed by the TMS and NMES, respectively, demonstrate temporal and spatial differences as manifested through the human-machine interface. This then provides a template to measure the specific neural outcomes of the movement tasks, and in decoding differences in the contribution of cortical- (long-latency) and spinal-level (short-latency) motor control. This protocol is part of the development of a diagnostic tool that can be used to better understand how interaction between cortical and spinal motor centers changes with learning, or injury such as that experienced following stroke. 
    more » « less
  7. Abstract Recent advances in brain clearing and imaging have made it possible to image entire mammalian brains at sub-micron resolution. These images offer the potential to assemble brain-wide atlases of neuron morphology, but manual neuron reconstruction remains a bottleneck. Several automatic reconstruction algorithms exist, but most focus on single neuron images. In this paper, we present a probabilistic reconstruction method, ViterBrain, which combines a hidden Markov state process that encodes neuron geometry with a random field appearance model of neuron fluorescence. ViterBrain utilizes dynamic programming to compute the global maximizer of what we call the most probable neuron path. We applied our algorithm to imperfect image segmentations, and showed that it can follow axons in the presence of noise or nearby neurons. We also provide an interactive framework where users can trace neurons by fixing start and endpoints. ViterBrain is available in our open-source Python package . 
    more » « less