Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT In recent years, breakthroughs in methods and data have enabled gravitational time delays to emerge as a very powerful tool to measure the Hubble constant H0. However, published state-of-the-art analyses require of order 1 yr of expert investigator time and up to a million hours of computing time per system. Furthermore, as precision improves, it is crucial to identify and mitigate systematic uncertainties. With this time delay lens modelling challenge, we aim to assess the level of precision and accuracy of the modelling techniques that are currently fast enough to handle of order 50 lenses, via the blind analysismore »
-
The H0LiCOW collaboration inferred via strong gravitational lensing time delays a Hubble constant value of H 0 = 73.3 −1.8 +1.7 km s −1 Mpc −1 , describing deflector mass density profiles by either a power-law or stars (constant mass-to-light ratio) plus standard dark matter halos. The mass-sheet transform (MST) that leaves the lensing observables unchanged is considered the dominant source of residual uncertainty in H 0 . We quantify any potential effect of the MST with a flexible family of mass models, which directly encodes it, and they are hence maximally degenerate with H 0 . Our calculation ismore »
-
We present six new time-delay measurements obtained from R c -band monitoring data acquired at the Max Planck Institute for Astrophysics (MPIA) 2.2 m telescope at La Silla observatory between October 2016 and February 2020. The lensed quasars HE 0047−1756, WG 0214−2105, DES 0407−5006, 2M 1134−2103, PSJ 1606−2333, and DES 2325−5229 were observed almost daily at high signal-to-noise ratio to obtain high-quality light curves where we can record fast and small-amplitude variations of the quasars. We measured time delays between all pairs of multiple images with only one or two seasons of monitoring with the exception of the time delaysmore »
-
Time-delay cosmography of lensed quasars has achieved 2.4% precision on the measurement of the Hubble constant, H 0 . As part of an ongoing effort to uncover and control systematic uncertainties, we investigate three potential sources: 1- stellar kinematics, 2- line-of-sight effects, and 3- the deflector mass model. To meet this goal in a quantitative way, we reproduced the H0LiCOW/SHARP/STRIDES (hereafter TDCOSMO) procedures on a set of real and simulated data, and we find the following. First, stellar kinematics cannot be a dominant source of error or bias since we find that a systematic change of 10% of measured velocitymore »
-
We present new measurements of the time delays of WFI2033−4723. The data sets used in this work include 14 years of data taken at the 1.2 m Leonhard Euler Swiss telescope, 13 years of data from the SMARTS 1.3 m telescope at Las Campanas Observatory and a single year of high-cadence and high-precision monitoring at the MPIA 2.2 m telescope. The time delays measured from these different data sets, all taken in the R -band, are in good agreement with each other and with previous measurements from the literature. Combining all the time-delay estimates from our data sets results inmore »
-
ABSTRACT We present a blind time-delay cosmographic analysis for the lens system DES J0408−5354. This system is extraordinary for the presence of two sets of multiple images at different redshifts, which provide the opportunity to obtain more information at the cost of increased modelling complexity with respect to previously analysed systems. We perform detailed modelling of the mass distribution for this lens system using three band Hubble Space Telescope imaging. We combine the measured time delays, line-of-sight central velocity dispersion of the deflector, and statistically constrained external convergence with our lens models to estimate two cosmological distances. We measure themore »