skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: COSMOGRAIL: XVIII. time delays of the quadruply lensed quasar WFI2033−4723
We present new measurements of the time delays of WFI2033−4723. The data sets used in this work include 14 years of data taken at the 1.2 m Leonhard Euler Swiss telescope, 13 years of data from the SMARTS 1.3 m telescope at Las Campanas Observatory and a single year of high-cadence and high-precision monitoring at the MPIA 2.2 m telescope. The time delays measured from these different data sets, all taken in the R -band, are in good agreement with each other and with previous measurements from the literature. Combining all the time-delay estimates from our data sets results in Δ t AB = 36.2 +0.7 −0.8 days (2.1% precision), Δ t AC = −23.3 +1.2 −1.4 days (5.6%) and Δ t BC = −59.4 +1.3 −1.3 days (2.2%). In addition, the close image pair A1-A2 of the lensed quasars can be resolved in the MPIA 2.2 m data. We measure a time delay consistent with zero in this pair of images. We also explore the prior distributions of microlensing time-delay potentially affecting the cosmological time-delay measurements of WFI2033−4723. Our time-delay measurements are not precise enough to conclude that microlensing time delay is present or absent from the data. This work is part of a H0LiCOW series focusing on measuring the Hubble constant from WFI2033−4723.  more » « less
Award ID(s):
1814440 1906976 1907396 1614018
PAR ID:
10164186
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
Astronomy & Astrophysics
Volume:
629
ISSN:
0004-6361
Page Range / eLocation ID:
A97
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We present six new time-delay measurements obtained from R c -band monitoring data acquired at the Max Planck Institute for Astrophysics (MPIA) 2.2 m telescope at La Silla observatory between October 2016 and February 2020. The lensed quasars HE 0047−1756, WG 0214−2105, DES 0407−5006, 2M 1134−2103, PSJ 1606−2333, and DES 2325−5229 were observed almost daily at high signal-to-noise ratio to obtain high-quality light curves where we can record fast and small-amplitude variations of the quasars. We measured time delays between all pairs of multiple images with only one or two seasons of monitoring with the exception of the time delays relative to image D of PSJ 1606−2333. The most precise estimate was obtained for the delay between image A and image B of DES 0407−5006, where τ AB = −128.4 −3.8 +3.5 d (2.8% precision) including systematics due to extrinsic variability in the light curves. For HE 0047−1756, we combined our high-cadence data with measurements from decade-long light curves from previous COSMOGRAIL campaigns, and reach a precision of 0.9 d on the final measurement. The present work demonstrates the feasibility of measuring time delays in lensed quasars in only one or two seasons, provided high signal-to-noise ratio data are obtained at a cadence close to daily. 
    more » « less
  2. We present new time delays, the main ingredient of time delay cosmography, for 22 lensed quasars resulting from high-cadencer-band monitoring on the 2.6 m ESO VLT Survey Telescope and Max-Planck-Gesellschaft 2.2 m telescope. Each lensed quasar was typically monitored for one to four seasons, often shared between the two telescopes to mitigate the interruptions forced by the COVID-19 pandemic. The sample of targets consists of 19 quadruply and 3 doubly imaged quasars, which received a total of 1918 hours of on-sky time split into 21 581 wide-field frames, each 320 seconds long. In a given field, the 5-σdepth of the combined exposures typically reaches the 27thmagnitude, while that of single visits is 24.5 mag – similar to the expected depth of the upcoming Vera-Rubin LSST. The fluxes of the different lensed images of the targets were reliably de-blended, providing not only light curves with photometric precision down to the photon noise limit, but also high-resolution models of the targets whose features and astrometry were systematically confirmed inHubbleSpace Telescope imaging. This was made possible thanks to a new photometric pipeline,lightcurver, and the forward modelling methodSTARRED. Finally, the time delays between pairs of curves and their uncertainties were estimated, taking into account the degeneracy due to microlensing, and for the first time the full covariance matrices of the delay pairs are provided. Of note, this survey, with 13 square degrees, has applications beyond that of time delays, such as the study of the structure function of the multiple high-redshift quasars present in the footprint at a new high in terms of both depth and frequency. The reduced images will be available through the European Southern Observatory Science Portal. 
    more » « less
  3. Abstract We present the lens mass model of the quadruply-imaged gravitationally lensed quasar WFI2033−4723, and perform a blind cosmographical analysis based on this system. Our analysis combines (1) time-delay measurements from 14 years of data obtained by the COSmological MOnitoring of GRAvItational Lenses (COSMOGRAIL) collaboration, (2) high-resolution Hubble Space Telescope imaging, (3) a measurement of the velocity dispersion of the lens galaxy based on ESO-MUSE data, and (4) multi-band, wide-field imaging and spectroscopy characterizing the lens environment. We account for all known sources of systematics, including the influence of nearby perturbers and complex line-of-sight structure, as well as the parametrization of the light and mass profiles of the lensing galaxy. After unblinding, we determine the effective time-delay distance to be $$4784_{-248}^{+399}~\mathrm{Mpc}$$, an average precision of $$6.6{{\ \rm per\ cent}}$$. This translates to a Hubble constant $$H_{0} = 71.6_{-4.9}^{+3.8}~\mathrm{km~s^{-1}~Mpc^{-1}}$$, assuming a flat ΛCDM cosmology with a uniform prior on Ωm in the range [0.05, 0.5]. This work is part of the H0 Lenses in COSMOGRAIL’s Wellspring (H0LiCOW) collaboration, and the full time-delay cosmography results from a total of six strongly lensed systems are presented in a companion paper (H0LiCOW XIII). 
    more » « less
  4. Abstract We analyze variability in 15-season optical lightcurves from the doubly imaged lensed quasar SDSS J165043.44+425149.3 (SDSS1650), comprising five seasons of monitoring data from the Maidanak Observatory (277 nights in total, including the two seasons of data previously presented in Vuissoz et al.), five seasons of overlapping data from the Mercator telescope (269 nights), and 12 seasons of monitoring data from the US Naval Observatory, Flagstaff Station at lower cadence (80 nights). We update the 2007 time-delay measurement for SDSS1650 with these new data, finding a time delay of Δ t AB = 55.1 3.7 + 4.0 days, with image A leading image B. We analyze the microlensing variability in these lightcurves using a Bayesian Monte Carlo technique to yield measurements of the size of the accretion disk atλrest= 2420 Å, finding a half-light radius of log(r1/2/cm) = 16.19 0.58 + 0.38 assuming a 60° inclination angle. This result is unchanged if we model 30% flux contamination from the broad-line region. We use the width of the Mgiiline in the existing Sloan Digital Sky Survey spectra to estimate the mass of this system’s supermassive black hole, findingMBH= 2.47 × 109M. We confirm that the accretion disk size in this system, whose black hole mass is on the very high end of theMBHscale, is fully consistent with the existing quasar accretion disk size–black hole mass relation. 
    more » « less
  5. null (Ed.)
    Strong lensing time delays can measure the Hubble constant H 0 independently of any other probe. Assuming commonly used forms for the radial mass density profile of the lenses, a 2% precision has been achieved with seven Time-Delay Cosmography (TDCOSMO) lenses, in tension with the H 0 from the cosmic microwave background. However, without assumptions on the radial mass density profile – and relying exclusively on stellar kinematics to break the mass-sheet degeneracy – the precision drops to 8% with the current data obtained using the seven TDCOSMO lenses, which is insufficient to resolve the H 0 tension. With the addition of external information from 33 Sloan Lens ACS (SLACS) lenses, the precision improves to 5% if the deflectors of TDCOSMO and SLACS lenses are drawn from the same population. We investigate the prospect of improving the precision of time-delay cosmography without relying on mass profile assumptions to break the mass-sheet degeneracy. Our forecasts are based on a previously published hierarchical framework. With existing samples and technology, 3.3% precision on H 0 can be reached by adding spatially resolved kinematics of the seven TDCOSMO lenses. The precision improves to 2.5% with the further addition of kinematics for 50 nontime-delay lenses from SLACS and the Strong Lensing Legacy Survey. Expanding the samples to 40 time-delay and 200 nontime-delay lenses will improve the precision to 1.5% and 1.2%, respectively. Time-delay cosmography can reach sufficient precision to resolve the Hubble tension at 3–5 σ , without assumptions on the radial mass profile of lens galaxies. By obtaining this precision with and without external datasets, we will test the consistency of the samples and enable further improvements based on even larger future samples of time-delay and nontime-delay lenses (e.g., from the Rubin , Euclid , and Roman Observatories). 
    more » « less