Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
A new framework for advanced machine learning-based analysis of hyperspectral datasets HSKL was built using the well-known package scikit-learn. In this paper, we describe HSKL’s structure and basic usage. We also showcase the diversity of models supported by the package by applying 17 classification algorithms and measure their baseline performance in segmenting objects with highly similar spectral properties.Free, publicly-accessible full text available July 19, 2022
-
Advanced algorithms used in geospatial imaging were adopted for biomedical application to analyze hyperspectral datasets. To demonstrate the effectiveness, endmember extractions method was applied for delineating tumors in animal models of cancer.
-
Multi- and hyperspectral imaging modalities encompass a growing number of spectral techniques that find many applications in geospatial, biomedical and machine vision fields. The rapidly increasing number of applications requires a convenient easy-to-navigate software that can be used by new and experienced users to analyze data, develop, apply, and deploy novel algorithms. Herein, we present our platform, IDCube that performs essential operations in hyperspectral data analysis to realize the full potential of spectral imaging. The strength of the software lies in its interactive features that enable the users to optimize parameters and obtain visual input for the user. The entiremore »Free, publicly-accessible full text available July 19, 2022
-
High-quality temperature data at a finer spatio-temporal scale is critical for analyzing the risk of heat exposure and hazards in urban environments. The variability of urban landscapes makes cities a challenging environment for quantifying heat exposure. Most of the existing heat hazard studies have inherent limitations on two fronts; first, the spatio-temporal granularities are too coarse, and second, the inability to track the ambient air temperature (AAT) instead of land surface temperature (LST). Overcoming these limitations requires developing models for mapping the variability in heat exposure in urban environments. We investigated an integrated approach for mapping urban heat hazards bymore »
-
Free, publicly-accessible full text available June 1, 2023
-
Free, publicly-accessible full text available October 1, 2022
-
A bstract A search for long-lived particles decaying into muon pairs is performed using proton-proton collisions at a center-of-mass energy of 13 TeV, collected by the CMS experiment at the LHC in 2017 and 2018, corresponding to an integrated luminosity of 101 fb − 1 . The data sets used in this search were collected with a dedicated dimuon trigger stream with low transverse momentum thresholds, recorded at high rate by retaining a reduced amount of information, in order to explore otherwise inaccessible phase space at low dimuon mass and nonzero displacement from the primary interaction vertex. No significant excessmore »Free, publicly-accessible full text available April 1, 2023
-
A bstract The top quark pair production cross section is measured in proton-proton collisions at a center-of-mass energy of 5.02 TeV. The data were collected in a special LHC low-energy and low-intensity run in 2017, and correspond to an integrated luminosity of 302 pb − 1 . The measurement is performed using events with one electron and one muon of opposite charge, and at least two jets. The measured cross section is 60 . 7 ± 5 . 0 (stat) ± 2 . 8 (syst) ± 1 . 1 (lumi) pb. A combination with the result in the single leptonmore »Free, publicly-accessible full text available April 1, 2023
-
A bstract A search for a heavy resonance decaying into a top quark and a W boson in proton-proton collisions at $$ \sqrt{s} $$ s = 13 TeV is presented. The data analyzed were recorded with the CMS detector at the LHC and correspond to an integrated luminosity of 138 fb − 1 . The top quark is reconstructed as a single jet and the W boson, from its decay into an electron or muon and the corresponding neutrino. A top quark tagging technique based on jet clustering with a variable distance parameter and simultaneous jet grooming is used tomore »Free, publicly-accessible full text available April 1, 2023