skip to main content


Search for: All records

Creators/Authors contains: "Mistakidis, Simeon I"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We study the impact of induced correlations and quasiparticle properties by immersing two distinguishable impurities in a harmonically trapped bosonic medium. It is found that when the impurities couple both either repulsively or attractively to their host, the latter mediates a two-body correlated behavior between them. In the reverse case, namely the impurities interact oppositely with the host, they feature anti-bunching. Monitoring the impurities relative distance and constructing an effective two-body model to be compared with the full many-body calculations, we are able to associate the induced (anti-) correlated behavior of the impurities with the presence of attractive (repulsive) induced interactions. Furthermore, we capture the formation of a bipolaron and a trimer state in the strongly attractive regime. The trimer refers to the correlated behavior of two impurities and a representative atom of the bosonic medium and it is characterized by an ellipsoidal shape of the three-body correlation function. Our results open the way for controlling polaron induced correlations and creating relevant bound states.

     
    more » « less
    Free, publicly-accessible full text available January 1, 2025
  2. Free, publicly-accessible full text available March 1, 2025
  3. Free, publicly-accessible full text available January 1, 2025
  4. Abstract

    In quantum chaotic systems, the spectral form factor (SFF), defined as the Fourier transform of two-level spectral correlation function, is known to follow random matrix theory (RMT), namely a ‘ramp’ followed by a ‘plateau’ in late times. Recently, a generic early-time deviation from RMT, so-called the ‘bump’, was shown to exist in random quantum circuits as toy models for many-body quantum systems. We demonstrate the existence of ‘bump-ramp-plateau’ behavior in the SFF for a number of paradigmatic and stroboscopically-driven 1D cold-atom models: spinless and spin-1/2 Bose-Hubbard models, and nonintegrable spin-1 condensate with contact or dipolar interactions. We find that the scaling of the many-body Thouless timetTh—the onset of RMT—, and the bump amplitude are more sensitive to variations in atom number than the lattice size regardless of the hyperfine structure, the symmetry classes, or the choice of driving protocol. Moreover,tThscaling and the increase of the bump amplitude in atom number are significantly slower in spinor gases than interacting bosons in 1D optical lattices, demonstrating the role of locality. We obtain universal scaling functions of SFF which suggest power-law behavior for the bump regime in quantum chaotic cold-atom systems, and propose an interference measurement protocol.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  5. We explore the dynamics and interactions of multiple bright droplets and bubbles, as well as the interactions of kinks with droplets and with antikinks, in the extended one-dimensional Gross–Pitaevskii model including the Lee–Huang–Yang correction. Existence regions are identified for the one-dimensional droplets and bubbles in terms of their chemical potential, verifying the stability of the droplets and exposing the instability of the bubbles. The limiting case of the droplet family is a stable kink. The interactions between droplets demonstrate in-phase (out-of-phase) attraction (repulsion), with the so-called Manton’s method explicating the observed dynamical response, and mixed behavior for intermediate values of the phase shift. Droplets bearing different chemical potentials experience mass-exchange phenomena. Individual bubbles exhibit core expansion and mutual attraction prior to their destabilization. Droplets interacting with kinks are absorbed by them, a process accompanied by the emission of dispersive shock waves and gray solitons. Kink–antikink interactions are repulsive, generating counter-propagating shock waves. Our findings reveal dynamical features of droplets and kinks that can be detected in current experiments. 
    more » « less
    Free, publicly-accessible full text available September 1, 2024
  6. Abstract We unravel the correlated quantum quench dynamics of a single impurity immersed in a bosonic environment confined in an one-dimensional double-well potential. A particular emphasis is placed on the structure of the time-evolved many-body (MB) wave function by relying on a Schmidt decomposition whose coefficients directly quantify the number of configurations that are macroscopically populated. For a non-interacting bosonic bath and weak postquench impurity-bath interactions, we observe the dynamical formation of a two-fold fragmented MB state which is related to intra-band excitation processes of the impurity and manifests as a two-body phase separation (clustering) between the two species for repulsive (attractive) interactions. Increasing the postquench impurity-bath coupling strength leads to the destruction of the two-fold fragmentation since the impurity undergoes additional inter-band excitation dynamics. By contrast, a weakly interacting bath suppresses excitations of the bath particles and consequently the system attains a weakly fragmented MB state. Our results explicate the interplay of intra- and inter-band impurity excitations for the dynamical generation of fragmented MB states in multi-well traps and for designing specific entangled impurity states. 
    more » « less
  7. Cavity quantum electrodynamics provides an ideal platform to engineer and control light-matter interactions with polariton quasiparticles. In this work, we investigate collective phenomena in a system of many particles in a harmonic trap coupled to a homogeneous cavity vacuum field. The system couples collectively to the cavity field, through its center of mass, and collective polariton states emerge. The cavity field mediates pairwise long-range interactions and enhances the effective mass of the particles. This leads to an enhancement of localization in the matter ground state density, which features a maximum when light and matter are on resonance, and demonstrates a Dicke-like, collective behavior with the particle number. The light-matter interaction also modifies the photonic properties of the polariton system, as the ground state is populated with bunched photons. In addition, it is shown that the diamagneticA^2A2term is necessary for the stability of the system, as otherwise the superradiant ground state instability occurs. We demonstrate that coherent transfer of polaritonic population is possible with an external magnetic field and by monitoring the Landau-Zener transition probability.

     
    more » « less
  8. Abstract We investigate the polaronic properties of a single impurity immersed in a weakly interacting bosonic environment confined within a one-dimensional double-well potential using an exact diagonalization approach. We find that an increase of the impurity–bath coupling results in a vanishing residue, signifying the occurrence of the polaron orthogonality catastrophe. Asymptotic configurations of the systems’ ground state wave function in the strongly interacting regime are obtained by means of a Schmidt decomposition, which in turn accounts for the observed orthogonality catastrophe of the polaron. We exemplify that depending on the repulsion of the Bose gas, three distinct residue behaviors appear with respect to the impurity–bath coupling. These residue regimes are characterized by two critical values of the bosonic repulsion and originate from the interplay between the intra- and the interband excitations of the impurity. Moreover, they can be clearly distinguished in the corresponding species reduced density matrices with the latter revealing a phase separation on either the one- or the two-body level. The impact of the interspecies mass-imbalance on the impurity’s excitation processes is appreciated yielding an interaction shift of the residue regions. Our results explicate the interplay of intra- and interband excitation processes for the polaron generation in multiwell traps and for designing specific polaron entangled states motivating their exposure in current experiments. 
    more » « less
  9. Recent studies have demonstrated that higher than two-body bath-impurity correlations are not important for quantitatively describing the ground state of the Bose polaron. Motivated by the above, we employ the so-called Gross Ansatz (GA) approach to unravel the stationary and dynamical properties of the homogeneous one-dimensional Bose-polaron for different impurity momenta and bath-impurity couplings. We explicate that the character of the equilibrium state crossovers from the quasi-particle Bose polaron regime to the collective-excitation stationary dark-bright soliton for varying impurity momentum and interactions. Following an interspecies interaction quench the temporal orthogonality catastrophe is identified, provided that bath-impurity interactions are sufficiently stronger than the intraspecies bath ones, thus generalizing the results of the confined case. This catastrophe originates from the formation of dispersive shock wave structures associated with the zero-range character of the bath-impurity potential. For initially moving impurities, a momentum transfer process from the impurity to the dispersive shock waves via the exerted drag force is demonstrated, resulting in a final polaronic state with reduced velocity. Our results clearly demonstrate the crucial role of non-linear excitations for determining the behavior of the one-dimensional Bose polaron. 
    more » « less