Evolution by natural selection and adaptation are core concepts in biology that students must see and correctly understand their meaning. However, using these concepts in evidence-based learning strategies in the classroom is a difficult task. Here, we present a 5E lesson plan to address the Next Generation Science Standards performance expectation HS-LS4-4, to “construct an explanation based on evidence for how natural selection leads to adaptation of populations.” The Functional Frogs lesson provides multiple hands-on activities to engage students in the development of hypotheses, collection and analysis of empirical data on frog swimming, presentation of results, and construction of explanations supported by evidence for the results. The lesson’s central idea is for students to understand the trait values that provide an advantage in the aquatic environment, increasing a frog’s survival. The link between morphological changes and survival is used to explain how natural selection acts on populations, leading to adaptive evolution.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
-
Abstract Most of life’s vast diversity of species and phenotypes is often attributed to adaptive radiation. Yet its contribution to species and phenotypic diversity of a major group has not been examined. Two key questions remain unresolved. First, what proportion of clades show macroevolutionary dynamics similar to adaptive radiations? Second, what proportion of overall species richness and phenotypic diversity do these adaptive-radiation-like clades contain? We address these questions with phylogenetic and morphological data for 1226 frog species across 43 families (which represent >99% of all species). Less than half of frog families resembled adaptive radiations (with rapid diversification and morphological evolution). Yet, these adaptive-radiation-like clades encompassed ~75% of both morphological and species diversity, despite rapid rates in other clades (e.g., non-adaptive radiations). Overall, we support the importance of adaptive-radiation-like evolution for explaining diversity patterns and provide a framework for characterizing macroevolutionary dynamics and diversity patterns in other groups.
-
O'Connell, Mary (Ed.)Abstract The data available for reconstructing molecular phylogenies have become wildly disparate. Phylogenomic studies can generate data for thousands of genetic markers for dozens of species, but for hundreds of other taxa, data may be available from only a few genes. Can these two types of data be integrated to combine the advantages of both, addressing the relationships of hundreds of species with thousands of genes? Here, we show that this is possible, using data from frogs. We generated a phylogenomic data set for 138 ingroup species and 3,784 nuclear markers (ultraconserved elements [UCEs]), including new UCE data from 70 species. We also assembled a supermatrix data set, including data from 97% of frog genera (441 total), with 1–307 genes per taxon. We then produced a combined phylogenomic–supermatrix data set (a “gigamatrix”) containing 441 ingroup taxa and 4,091 markers but with 86% missing data overall. Likelihood analysis of the gigamatrix yielded a generally well-supported tree among families, largely consistent with trees from the phylogenomic data alone. All terminal taxa were placed in the expected families, even though 42.5% of these taxa each had >99.5% missing data and 70.2% had >90% missing data. Our results show that missing data need not be an impediment to successfully combining very large phylogenomic and supermatrix data sets, and they open the door to new studies that simultaneously maximize sampling of genes and taxa.more » « less
-
Abstract Models based on the Ornstein–Uhlenbeck process have become standard for the comparative study of adaptation. Cooper et al. (2016) have cast doubt on this practice by claiming statistical problems with fitting Ornstein–Uhlenbeck models to comparative data. Specifically, they claim that statistical tests of Brownian motion may have too high Type I error rates and that such error rates are exacerbated by measurement error. In this note, we argue that these results have little relevance to the estimation of adaptation with Ornstein–Uhlenbeck models for three reasons. First, we point out that Cooper et al. (2016) did not consider the detection of distinct optima (e.g. for different environments), and therefore did not evaluate the standard test for adaptation. Second, we show that consideration of parameter estimates, and not just statistical significance, will usually lead to correct inferences about evolutionary dynamics. Third, we show that bias due to measurement error can be corrected for by standard methods. We conclude that Cooper et al. (2016) have not identified any statistical problems specific to Ornstein–Uhlenbeck models, and that their cautions against their use in comparative analyses are unfounded and misleading. [adaptation, Ornstein–Uhlenbeck model, phylogenetic comparative method.]
-
ABSTRACT Comparative phylogenetic studies of adaptation are uncommon in biomechanics and physiology. Such studies require data collection from many species, a challenge when this is experimentally intensive. Moreover, researchers struggle to employ the most biologically appropriate phylogenetic tools for identifying adaptive evolution. Here, we detail an established but greatly underutilized phylogenetic comparative framework – the Ornstein–Uhlenbeck process – that explicitly models long-term adaptation. We discuss challenges in implementing and interpreting the model, and we outline potential solutions. We demonstrate use of the model through studying the evolution of thermal physiology in treefrogs. Frogs of the family Hylidae have twice colonized the temperate zone from the tropics, and such colonization likely involved a fundamental change in physiology due to colder and more seasonal temperatures. However, which traits changed to allow colonization is unclear. We measured cold tolerance and characterized thermal performance curves in jumping for 12 species of treefrogs distributed from the Neotropics to temperate North America. We then conducted phylogenetic comparative analyses to examine how tolerances and performance curves evolved and to test whether that evolution was adaptive. We found that tolerance to low temperatures increased with the transition to the temperate zone. In contrast, jumping well at colder temperatures was unrelated to biogeography and thus did not adapt during dispersal. Overall, our study shows how comparative phylogenetic methods can be leveraged in biomechanics and physiology to test the evolutionary drivers of variation among species.more » « less
-
Abstract Sexual dimorphism (SD) is a common feature of animals, and selection for sexually dimorphic traits may affect both functional morphological traits and organismal performance. Trait evolution through natural selection can also vary across environments. However, whether the evolution of organismal performance is distinct between the sexes is rarely tested in a phylogenetic comparative context. Anurans commonly exhibit sexual size dimorphism, which may affect jumping performance given the effects of body size on locomotion. They also live in a wide variety of microhabitats. Yet the relationships among dimorphism, performance, and ecology remain underexamined in anurans. Here, we explore relationships between microhabitat use, body size, and jumping performance in males and females to determine the drivers of dimorphic patterns in jumping performance. Using methods for predicting jumping performance through anatomical measurements, we describe how fecundity selection and natural selection associated with body size and microhabitat have likely shaped female jumping performance. We found that the magnitude of sexual size dimorphism (where females are about 14% larger than males) was much lower than dimorphism in muscle volume, where females had 42% more muscle than males (after accounting for body size). Despite these sometimes‐large averages, phylogenetic
t ‐tests failed to show the statistical significance of SD for any variable, indicating sexually dimorphic species tend to be closely related. While SD of jumping performance did not vary among microhabitats, we found female jumping velocity and energy differed across microhabitats. Overall, our findings indicate that differences in sex‐specific reproductive roles, size, jumping‐related morphology, and performance are all important determinants in how selection has led to the incredible ecophenotypic diversity of anurans. -
null (Ed.)ABSTRACT Miniature insects must overcome significant viscous resistance in order to fly. They typically possess wings with long bristles on the fringes and use a clap-and-fling mechanism to augment lift. These unique solutions to the extreme conditions of flight at tiny sizes (<2 mm body length) suggest that natural selection has optimized wing design for better aerodynamic performance. However, species vary in wingspan, number of bristles (n) and bristle gap (G) to diameter (D) ratio (G/D). How this variation relates to body length (BL) and its effects on aerodynamics remain unknown. We measured forewing images of 38 species of thrips and 21 species of fairyflies. Our phylogenetic comparative analyses showed that n and wingspan scaled positively and similarly with BL across both groups, whereas G/D decreased with BL, with a sharper decline in thrips. We next measured aerodynamic forces and visualized flow on physical models of bristled wings performing clap-and-fling kinematics at a chord-based Reynolds number of 10 using a dynamically scaled robotic platform. We examined the effects of dimensional (G, D, wingspan) and non-dimensional (n, G/D) geometric variables on dimensionless lift and drag. We found that: (1) increasing G reduced drag more than decreasing D; (2) changing n had minimal impact on lift generation; and (3) varying G/D minimally affected aerodynamic forces. These aerodynamic results suggest little pressure to functionally optimize n and G/D. Combined with the scaling relationships between wing variables and BL, much wing variation in tiny flying insects might be best explained by underlying shared growth factors.more » « less