skip to main content

Search for: All records

Creators/Authors contains: "Momeni, Kasra"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The integrity of the final printed components is mostly dictated by the adhesion between the particles and phases that form upon solidification, which is a major problem in printing metallic parts using available In-Space Manufacturing (ISM) technologies based on the Fused Deposition Modeling (FDM) methodology. Understanding the melting/solidification process helps increase particle adherence and allows to produce components with greater mechanical integrity. We developed a phase-field model of solidification for binary alloys. The phase-field approach is unique in capturing the microstructure with computationally tractable costs. The developed phase-field model of solidification of binary alloys satisfies the stability conditions at all temperatures. The suggested model is tuned for Ni-Cu alloy feedstocks. We derived the Ginzburg-Landau equations governing the phase transformation kinetics and solved them analytically for the dilute solution. We calculated the concentration profile as a function of interface velocity for a one-dimensional steady-state diffuse interface neglecting elasticity and obtained the partition coefficient, k, as a function of interface velocity. Numerical simulations for the diluted solution are used to study the interface velocity as a function of undercooling for the classic sharp interface model, partitionless solidification, and thin interface.
    Free, publicly-accessible full text available January 1, 2024
  2. Field deployment is critical to developing numerous sensitive impedance transducers. Precise, cost-effective, and real-time readout units are being sought to interface these sensitive impedance transducers for various clinical or environmental applications. This paper presents a general readout method with a detailed design procedure for interfacing impedance transducers that generate small fractional changes in the impedance characteristics after detection. The emphasis of the design is obtaining a target response resolution considering the accuracy in real-time. An entire readout unit with amplification/filtering and real-time data acquisition and processing using a single microcontroller is proposed. Most important design parameters, such as the signal-to-noise ratio (SNR), common-mode-to-differential conversion, digitization configuration/speed, and the data processing method are discussed here. The studied process can be used as a general guideline to design custom readout units to interface with various developed transducers in the laboratory and verify the performance for field deployment and commercialization. A single frequency readout unit with a target 8-bit resolution to interface differentially placed transducers (e.g., bridge configuration) is designed and implemented. A single MCU is programmed for real-time data acquisition and sine fitting. The 8-bit resolution is achieved even at low SNR levels of roughly 7 dB by setting the component valuesmore »and fitting algorithm parameters with the given methods.« less
    Free, publicly-accessible full text available January 1, 2024
  3. Transition metal dichalcogenides (TMDCs) are potential materials for future optoelectronic devices. Grain boundaries (GBs) can significantly influence the optoelectronic properties of TMDC materials. Here, we have investigated the mechanical characteristics of tungsten diselenide (WSe 2 ) monolayers and failure process with symmetric tilt GBs using ReaxFF molecular dynamics simulations. In particular, the effects of topological defects, loading rates, and temperatures are investigated. We considered nine different grain boundary structures of monolayer WSe 2 , of which six are armchair (AC) tilt structures, and the remaining three are zigzag (ZZ) tilt structures. Our results indicate that both tensile strength and fracture strain of WSe 2 with symmetric tilt GBs decrease as the temperature increases. We revealed an interfacial phase transition for high-angle GBs reduces the elastic strain energy within the interface at finite temperatures. Furthermore, brittle cracking is the dominant failure mode in the WSe 2 monolayer with tilted GBs. WSe 2 GB structures showed more strain rate sensitivity at high temperatures than at low temperatures.
    Free, publicly-accessible full text available November 18, 2023
  4. Free, publicly-accessible full text available September 1, 2023
  5. Free, publicly-accessible full text available August 1, 2023
  6. Abstract

    Reproducible wafer-scale growth of two-dimensional (2D) materials using the Chemical Vapor Deposition (CVD) process with precise control over their properties is challenging due to a lack of understanding of the growth mechanisms spanning over several length scales and sensitivity of the synthesis to subtle changes in growth conditions. A multiscale computational framework coupling Computational Fluid Dynamics (CFD), Phase-Field (PF), and reactive Molecular Dynamics (MD) was developed – called the CPM model – and experimentally verified. Correlation between theoretical predictions and thorough experimental measurements for a Metal-Organic CVD (MOCVD)-grown WSe2model material revealed the full power of this computational approach. Large-area uniform 2D materials are synthesized via MOCVD, guided by computational analyses. The developed computational framework provides the foundation for guiding the synthesis of wafer-scale 2D materials with precise control over the coverage, morphology, and properties, a critical capability for fabricating electronic, optoelectronic, and quantum computing devices.

  7. Abstract In this research, a room temperature multicycle nanoindentation technique was implemented to evaluate the effects of the laser peening (LP) process on the surface mechanical behavior of additively manufactured (AM) Inconel 625. Repetitive deformation was introduced by loading-unloading during an instrumented nanoindentation test on the as-built (No LP), 1-layer, and 4-layer laser peened (1LP and 4LP) conditions. It was observed that laser-peened specimens had a significantly higher resistance to penetration of the indenter and lower permanent deformation. This is attributed to the pre-existing dislocation density induced by LP in the material which affects the dislocation interactions during the cyclic indentation. Moreover, high levels of compressive stresses, which are greater in the 4LP specimen than the 1LP specimen, lead to more effective improvement of surface fatigue properties. The transition of the material response from elastic-plastic to almost purely elastic in 4LP specimens was initiated much earlier than it did in the No LP, and 1LP specimens. In addition to the surface fatigue properties, hardness and elastic modulus were also evaluated and compared.
    Free, publicly-accessible full text available June 1, 2023
  8. Free, publicly-accessible full text available April 27, 2023
  9. Currently, no commercial aluminum 7000 series filaments are available for making aluminum parts using fused deposition modeling (FDM)-based additive manufacturing (AM). The key technical challenge associated with the FDM of aluminum alloy parts is consolidating the loosely packed alloy powders in the brown-body, separated by thin layers of surface oxides and polymer binders, into a dense structure. Classical pressing and sintering-based powder metallurgy (P/M) technologies are employed in this study to assist the development of FDM processing strategies for making strong Al7075 AM parts. Relevant FDM processing strategies, including green-body/brown-body formation and the sintering processes, are examined. The microstructures of the P/M-prepared, FDM-like Al7075 specimens are analyzed and compared with commercially available FDM 17-4 steel specimens. We explored the polymer removal and sintering strategies to minimize the pores of FDM-Al7075-sintered parts. Furthermore, the mechanisms that govern the sintering process are discussed.