skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 17 until 8:00 AM ET on Saturday, May 18 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Muller, David A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 13, 2024
  2. Free, publicly-accessible full text available January 1, 2025
  3. We present measurements of thermally generated transverse spin currents in the topological insulator Bi2Se3, thereby completing measurements of interconversions among the full triad of thermal gradients, charge currents, and spin currents. We accomplish this by comparing the spin Nernst magneto-thermopower to the spin Hall magnetoresistance for bilayers of Bi2Se3/CoFeB. We find that Bi2Se3does generate substantial thermally driven spin currents. A lower bound for the ratio of spin current density to thermal gradient isJsxT= (4.9 ± 0.9) × 106(2e)A m2K μm1, and a lower bound for the magnitude of the spin Nernst ratio is −0.61 ± 0.11. The spin Nernst ratio for Bi2Se3is the largest among all materials measured to date, two to three times larger compared to previous measurements for the heavy metals Pt and W. Strong thermally generated spin currents in Bi2Se3can be understood via Mott relations to be due to an overall large spin Hall conductivity and its dependence on electron energy.

     
    more » « less
    Free, publicly-accessible full text available December 15, 2024
  4. A mixture ofN,N,N′-trisubstituted thiourea and cyclicN,N,N′,N′-tetrasubstituted selenourea precursors were used to synthesize three monolayer thick CdS1−xSexnanoplatelets in a single synthetic step.

     
    more » « less
    Free, publicly-accessible full text available November 8, 2024
  5. Abstract

    Surface structures on radio-frequency (RF) superconductors are crucially important in determining their interaction with the RF field. Here we investigate the surface compositions, structural profiles, and valence distributions of oxides, carbides, and impurities on niobium (Nb) and niobium–tin (Nb3Sn)in situunder different processing conditions. We establish the underlying mechanisms of vacuum baking and nitrogen processing in Nb and demonstrate that carbide formation induced during high-temperature baking, regardless of gas environment, determines subsequent oxide formation upon air exposure or low-temperature baking, leading to modifications of the electron population profile. Our findings support the combined contribution of surface oxides and second-phase formation to the outcome of ultra-high vacuum baking (oxygen processing) and nitrogen processing. Also, we observe that vapor-diffused Nb3Sn contains thick metastable oxides, while electrochemically synthesized Nb3Sn only has a thin oxide layer. Our findings reveal fundamental mechanisms of baking and processing Nb and Nb3Sn surface structures for high-performance superconducting RF and quantum applications.

     
    more » « less
  6. Abstract

    Measuring local polar ordering is key to understanding ferroelectricity in thin films, especially for systems with small domains or significant disorder. Scanning nanobeam electron diffraction (NBED) provides an effective local probe of lattice parameters, local fields, polarization directions, and charge densities, which can be analyzed using a relatively low beam dose over large fields of view. However, quantitatively extracting the magnitudes and directions of polarization vectors from NBED remains challenging. Here, we use a cepstral approach, similar to a pair distribution function, to determine local polar displacements that drive ferroelectricity from NBED patterns. Because polar distortions generate asymmetry in the diffraction pattern intensity, we can efficiently recover the underlying displacements from the imaginary part of the cepstrum transform. We investigate the limits of this technique using analytical and simulated data and give experimental examples, achieving the order of 1.1 pm precision and mapping of polar displacements with nanometer resolution.

     
    more » « less
    Free, publicly-accessible full text available July 12, 2024
  7. Abstract

    Workbench-size particle accelerators, enabled by Nb3Sn-based superconducting radio-frequency (SRF) cavities, hold the potential of driving scientific discovery by offering a widely accessible and affordable source of high-energy electrons and x-rays. Thin-film Nb3Sn RF superconductors with high quality factors, high operation temperatures, and high-field potentials are critical for these devices. However, surface roughness, non-stoichiometry, and impurities in Nb3Sn deposited by conventional Sn-vapor diffusion prevent them from reaching their theoretical capabilities. Here we demonstrate a seed-free electrochemical synthesis that pushes the limit of chemical and physical properties in Nb3Sn. Utilization of electrochemical Sn pre-deposits reduces the roughness of converted Nb3Sn by five times compared to typical vapor-diffused Nb3Sn. Quantitative mappings using chemical and atomic probes confirm improved stoichiometry and minimized impurity concentrations in electrochemically synthesized Nb3Sn. We have successfully applied this Nb3Sn to the large-scale 1.3 GHz SRF cavity and demonstrated ultra-low BCS surface resistances at multiple operation temperatures, notably lower than vapor-diffused cavities. Our smooth, homogeneous, high-purity Nb3Sn provides the route toward high efficiency and high fields for SRF applications under helium-free cryogenic operations.

     
    more » « less
  8. Free, publicly-accessible full text available August 11, 2024
  9. Free, publicly-accessible full text available August 9, 2024
  10. Free, publicly-accessible full text available August 9, 2024