skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Muller, David"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 1, 2026
  2. Free, publicly-accessible full text available July 1, 2026
  3. Free, publicly-accessible full text available April 9, 2026
  4. Abstract To overcome the spatial resolution limit set by aperture-limited diffraction in traditional scanning transmission electron microscopy, microscopists have developed ptychography enabled by iterative phase retrieval algorithms and high-dynamic-range pixel array detectors. Current detector designs are limited by the data rate off chip, so a high-pixel-count detector has a proportionally lower frame rate than the few-segment detectors used for differential phase contrast (DPC) imaging. This slower acquisition speed leads to heightened vulnerability to scan noise, drift, and potential sample damage. This creates opportunities for repurposing fast segmented detectors for ptychography by trading a reduction in reciprocal space pixels for an increase in real space pixels. Here, we explore a strategy of oversampling in real space and instead apply detector pixel upsampling during the reconstruction process. We demonstrate the viability of achieving super-resolution ptychography on thin objects using only 2 × 2 detector pixels, surpassing the resolution of integrated DPC (iDPC) imaging. With optimization using simulated datasets and experiments on MoTe2/WSe2 bilayer moiré superlattices, we achieved super-resolution ptychography reconstructions under rapid acquisition conditions (37.5 pA, 1 μs dwell time), yielding over 50% improvements in contrast and information limit compared to annular dark field and iDPC imaging on the same detectors. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  5. Free, publicly-accessible full text available March 10, 2026
  6. Free, publicly-accessible full text available May 1, 2026
  7. Mechanical bonds arise between molecules that contain interlocked subunits, such as one macrocycle threaded through another. Within polymers, these linkages will confer distinctive mechanical properties and other emergent behaviors, but polymerizations that form mechanical bonds efficiently and use simple monomeric building blocks are rare. In this work, we introduce a solid-state polymerization in which one monomer infiltrates crystals of another to form a macrocycle and mechanical bond at each repeat unit of a two-dimensional (2D) polymer. This mechanically interlocked 2D polymer is formed as a layered solid that is readily exfoliated in common organic solvents, enabling spectroscopic characterization and atomic-resolution imaging using advanced electron microscopy techniques. The 2D mechanically interlocked polymer is easily prepared on multigram scales, which, along with its solution processibility, enables the facile fabrication of composite fibers with Ultem that exhibit enhanced stiffness and strength. 
    more » « less
    Free, publicly-accessible full text available January 17, 2026