skip to main content


Search for: All records

Creators/Authors contains: "Munagala, Kamesh"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 7, 2024
  2. We model the societal task of redistricting political districts as a partitioning problem: Given a set of n points in the plane, each belonging to one of two parties, and a parameter k, our goal is to compute a partition P of the plane into regions so that each region contains roughly s = n/k points. P should satisfy a notion of "local" fairness, which is related to the notion of core, a well-studied concept in cooperative game theory. A region is associated with the majority party in that region, and a point is unhappy in P if it belongs to the minority party. A group D of roughly s contiguous points is called a deviating group with respect to P if majority of points in D are unhappy in P. The partition P is locally fair if there is no deviating group with respect to P.This paper focuses on a restricted case when points lie in 1D. The problem is non-trivial even in this case. We consider both adversarial and "beyond worst-case" settings for this problem. For the former, we characterize the input parameters for which a locally fair partition always exists; we also show that a locally fair partition may not exist for certain parameters. We then consider input models where there are "runs" of red and blue points. For such clustered inputs, we show that a locally fair partition may not exist for certain values of s, but an approximate locally fair partition exists if we allow some regions to have smaller sizes. We finally present a polynomial-time algorithm for computing a locally fair partition if one exists. 
    more » « less
  3. We consider the problem of allocating divisible items among multiple agents, and consider the setting where any agent is allowed to introduce {\emph diversity constraints} on the items they are allocated. We motivate this via settings where the items themselves correspond to user ad slots or task workers with attributes such as race and gender on which the principal seeks to achieve demographic parity. We consider the following question: When an agent expresses diversity constraints into an allocation rule, is the allocation of other agents hurt significantly? If this happens, the cost of introducing such constraints is disproportionately borne by agents who do not benefit from diversity. We codify this via two desiderata capturing {\em robustness}. These are {\emph no negative externality} -- other agents are not hurt -- and {\emph monotonicity} -- the agent enforcing the constraint does not see a large increase in value. We show in a formal sense that the Nash Welfare rule that maximizes product of agent values is {\emph uniquely} positioned to be robust when diversity constraints are introduced, while almost all other natural allocation rules fail this criterion. We also show that the guarantees achieved by Nash Welfare are nearly optimal within a widely studied class of allocation rules. We finally perform an empirical simulation on real-world data that models ad allocations to show that this gap between Nash Welfare and other rules persists in the wild. 
    more » « less
  4. We study higher statistical moments of Distortion for randomized social choice in a metric implicit utilitarian model. The Distortion of a social choice mechanism is the expected approximation factor with respect to the optimal utilitarian social cost (OPT). The k'th moment of Distortion is the expected approximation factor with respect to the k'th power of OPT. We consider mechanisms that elicit alternatives by randomly sampling voters for their favorite alternative. We design two families of mechanisms that provide constant (with respect to the number of voters and alternatives) k'th moment of Distortion using just k samples if all voters can then participate in a vote among the proposed alternatives, or 2k-1 samples if only the sampled voters can participate. We also show that these numbers of samples are tight. Such mechanisms deviate from a constant approximation to OPT with probability that drops exponentially in the number of samples, independent of the total number of voters and alternatives. We conclude with simulations on real-world Participatory Budgeting data to qualitatively complement our theoretical insights.

     
    more » « less